This paper presents a gross examination about Unified Power Quality Conditioner (UPQC) to invigorate the power issues at the distribution level of the electrical system. Nowadays power electronics research has added t...This paper presents a gross examination about Unified Power Quality Conditioner (UPQC) to invigorate the power issues at the distribution level of the electrical system. Nowadays power electronics research has added the importance of power quality studies, for concrete illustration, Custom Power Devices (CPD) and Flexible AC Transmission position (FACTS) devices. The approach offered in this paper utilizes the series and shunt compensator of Unified Power Quality Conditioner (UPQC) to inject a compensation voltage in-phase with the source current over voltage fluctuations. The execution of two structures of UPQC, left-shunt (L-UPQC) and right-shunt (R-UPQC) are investigated under diverse operating conditions based on the fuzzy logic controller to raise the value of power quality of a single feeder distribution system by MATLAB/Simulink programming. Various power quality issues have been analyzed in this study. Finally, the right shunt UPQC is outperformed in this proposed power system.展开更多
The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can co...The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.展开更多
针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联...针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联侧的数学模型进行分析,提出了一种复合模型预测控制(hybrid model predictive control,H-MPC),所提控制方法结合了有限集模型预测控制(finite-control-set model predictive control, FCS-MPC)以及快速模型预测控制(fast model predictive control, F-MPC)。然后,通过构建两侧独立的价值函数减少了控制方法的计算量,同时也实现了五桥臂解耦控制。最后,相比传统线性(例如PI)和非线性(例如无源控制passivity-based control,PBC)的控制策略,所提复合模型预测控制在电压补偿、负序电压抑制以及谐波电流补偿等方面具有一定优势,并在一定程度上避免了复杂的参数整定及坐标变化环节。仿真实验结果证明了所提控制方法的可行性和优越性。展开更多
针对统一电能质量调节器(unified power quality conditioner,UPQC)线性控制算法中存在的控制结构复杂、控制器参数整定困难以及控制延时等问题,提出一种基于有限集模型预测控制(finite control set model predictive control,FCS-MPC)...针对统一电能质量调节器(unified power quality conditioner,UPQC)线性控制算法中存在的控制结构复杂、控制器参数整定困难以及控制延时等问题,提出一种基于有限集模型预测控制(finite control set model predictive control,FCS-MPC)的UPQC预测直接控制策略。在分析UPQC直接控制系统构成基础上,基于FCS-MPC基本原理,实现了同步旋转坐标系下UPQC的有限集模型预测直接控制系统建模,有效简化了控制器结构,降低了控制算法的复杂度;基于UPQC系统有功功率平衡以及负载基波电压幅值恒定原控制器参数整定困难以及控制延时等问题,提出一种基于有则,建立了适用于UPQC串联侧与并联侧预测直接控制策略的给定值产生机制;最后,采用Matlab/Simulink仿真软件将所提控制策略与传统线性控制算法进行了对比仿真,并基于DSP (digital signal processor)(10)FPGA (field programmable gate array)(10)TYPHOON HIL402实验平台进行了实验验证,仿真与实验结果验证了所提控制策略的有效性和可行性。展开更多
针对统一电能质量调节器(unified power quality conditioner,UPQC)传统线性控制算法中存在多个PI控制器及PWM调制环节,导致系统参数整定困难、结构复杂的问题,提出一种新型无差拍UPQC预测直接控制策略。推导并建立同步旋转坐标系下UPQ...针对统一电能质量调节器(unified power quality conditioner,UPQC)传统线性控制算法中存在多个PI控制器及PWM调制环节,导致系统参数整定困难、结构复杂的问题,提出一种新型无差拍UPQC预测直接控制策略。推导并建立同步旋转坐标系下UPQC串、并联侧预测直接控制模型;基于无差拍控制原理与有功功率平衡原则构建了串联侧给定电流产生机制,实现了直流侧电压的无差拍控制和网侧电流的预测直接控制;基于无差拍控制原理与负载侧电压恒定原则构建了并联侧给定电流产生机制,实现了负载侧电压的无差拍预测直接控制。仿真与实验分析结果表明,所提算法无PI和PWM调制环节,有效简化了控制系统结构,并提高了系统的动态性能及补偿效果。展开更多
This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is ca...This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.展开更多
This paper presents a comprehensive control strategy for unified power quality conditioners(UPQCs) to compensate for both voltage and current quality problems.The controllers for the series and shunt components of the...This paper presents a comprehensive control strategy for unified power quality conditioners(UPQCs) to compensate for both voltage and current quality problems.The controllers for the series and shunt components of the UPQC are, equally, divided into three blocks: à main controller, which deals with the fundamental-frequency issues such as active and reactive power flow;` harmonic controller, which ensures zero-error tracking while compensating voltage and current harmonics;′ the set-point generation block, which handles the different control objectives of the UPQC. The controller design procedure has been simplified to the selection of three parameters for each converter. Furthermore, the proposed strategy can be implemented measuring only four variables, which represents a reasonable number of sensors. In addition, a pulse width modulation(PWM)-based modulation with fixed switching frequency is used for both converters. The proposed control strategy has been validated experimentally under different conditions, including grid-frequency variations.展开更多
文摘This paper presents a gross examination about Unified Power Quality Conditioner (UPQC) to invigorate the power issues at the distribution level of the electrical system. Nowadays power electronics research has added the importance of power quality studies, for concrete illustration, Custom Power Devices (CPD) and Flexible AC Transmission position (FACTS) devices. The approach offered in this paper utilizes the series and shunt compensator of Unified Power Quality Conditioner (UPQC) to inject a compensation voltage in-phase with the source current over voltage fluctuations. The execution of two structures of UPQC, left-shunt (L-UPQC) and right-shunt (R-UPQC) are investigated under diverse operating conditions based on the fuzzy logic controller to raise the value of power quality of a single feeder distribution system by MATLAB/Simulink programming. Various power quality issues have been analyzed in this study. Finally, the right shunt UPQC is outperformed in this proposed power system.
文摘The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.
文摘针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联侧的数学模型进行分析,提出了一种复合模型预测控制(hybrid model predictive control,H-MPC),所提控制方法结合了有限集模型预测控制(finite-control-set model predictive control, FCS-MPC)以及快速模型预测控制(fast model predictive control, F-MPC)。然后,通过构建两侧独立的价值函数减少了控制方法的计算量,同时也实现了五桥臂解耦控制。最后,相比传统线性(例如PI)和非线性(例如无源控制passivity-based control,PBC)的控制策略,所提复合模型预测控制在电压补偿、负序电压抑制以及谐波电流补偿等方面具有一定优势,并在一定程度上避免了复杂的参数整定及坐标变化环节。仿真实验结果证明了所提控制方法的可行性和优越性。
文摘针对统一电能质量调节器(unified power quality conditioner,UPQC)线性控制算法中存在的控制结构复杂、控制器参数整定困难以及控制延时等问题,提出一种基于有限集模型预测控制(finite control set model predictive control,FCS-MPC)的UPQC预测直接控制策略。在分析UPQC直接控制系统构成基础上,基于FCS-MPC基本原理,实现了同步旋转坐标系下UPQC的有限集模型预测直接控制系统建模,有效简化了控制器结构,降低了控制算法的复杂度;基于UPQC系统有功功率平衡以及负载基波电压幅值恒定原控制器参数整定困难以及控制延时等问题,提出一种基于有则,建立了适用于UPQC串联侧与并联侧预测直接控制策略的给定值产生机制;最后,采用Matlab/Simulink仿真软件将所提控制策略与传统线性控制算法进行了对比仿真,并基于DSP (digital signal processor)(10)FPGA (field programmable gate array)(10)TYPHOON HIL402实验平台进行了实验验证,仿真与实验结果验证了所提控制策略的有效性和可行性。
文摘针对统一电能质量调节器(unified power quality conditioner,UPQC)传统线性控制算法中存在多个PI控制器及PWM调制环节,导致系统参数整定困难、结构复杂的问题,提出一种新型无差拍UPQC预测直接控制策略。推导并建立同步旋转坐标系下UPQC串、并联侧预测直接控制模型;基于无差拍控制原理与有功功率平衡原则构建了串联侧给定电流产生机制,实现了直流侧电压的无差拍控制和网侧电流的预测直接控制;基于无差拍控制原理与负载侧电压恒定原则构建了并联侧给定电流产生机制,实现了负载侧电压的无差拍预测直接控制。仿真与实验分析结果表明,所提算法无PI和PWM调制环节,有效简化了控制系统结构,并提高了系统的动态性能及补偿效果。
文摘This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.
基金partially financed by the Spanish Government RETOS programme(No.ENE2011-28527-C0401)research Grant FPI BES-2012-055790
文摘This paper presents a comprehensive control strategy for unified power quality conditioners(UPQCs) to compensate for both voltage and current quality problems.The controllers for the series and shunt components of the UPQC are, equally, divided into three blocks: à main controller, which deals with the fundamental-frequency issues such as active and reactive power flow;` harmonic controller, which ensures zero-error tracking while compensating voltage and current harmonics;′ the set-point generation block, which handles the different control objectives of the UPQC. The controller design procedure has been simplified to the selection of three parameters for each converter. Furthermore, the proposed strategy can be implemented measuring only four variables, which represents a reasonable number of sensors. In addition, a pulse width modulation(PWM)-based modulation with fixed switching frequency is used for both converters. The proposed control strategy has been validated experimentally under different conditions, including grid-frequency variations.