The lottery has long captivated the imagination of players worldwide, offering the tantalizing possibility of life-changing wins. While winning the lottery is largely a matter of chance, as lottery drawings are typica...The lottery has long captivated the imagination of players worldwide, offering the tantalizing possibility of life-changing wins. While winning the lottery is largely a matter of chance, as lottery drawings are typically random and unpredictable. Some people use the lottery terminal randomly generates numbers for them, some players choose numbers that hold personal significance to them, such as birthdays, anniversaries, or other important dates, some enthusiasts have turned to statistical analysis as a means to analyze past winning numbers identify patterns or frequencies. In this paper, we use order statistics to estimate the probability of specific order of numbers or number combinations being drawn in future drawings.展开更多
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displa...In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.展开更多
A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order pro...A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O (hm+1) accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O (hm+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
In this paper, a third order(in time) partial differential equation in R^n is con-sidered. By using semigroup method and constructing Lyapunov function, we establish the global existence, asymptotic behavior and uni...In this paper, a third order(in time) partial differential equation in R^n is con-sidered. By using semigroup method and constructing Lyapunov function, we establish the global existence, asymptotic behavior and uniform attractors in nonhomogeneous case. In addition, we also obtain the results of well-uosedness in semilinear case.展开更多
In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and...In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and 10. Moreover, we found some regularities of such distributions valid for any sample size.展开更多
This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The...This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The continuous formulation and its first derivatives were evaluated at some selected grid and off grid points to obtain our proposed method. The superiority of the method over the existing methods is established numerically.展开更多
This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flex...This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flexibilities on the definition of the perturbation parameter and on the determination of the wave celerity. The universal solution can be extended to that of Chappelear (1961), confirming the correctness for the universal theory. Furthermore, a particular fifth-order solution is obtained where the wave steepness is used as the perturbation parameter. The applicable range of this solution in shallow depth is analyzed. Comparisons with the Fourier approximated results and with the experimental measurements show that the solution is fairly suited to waves with the Ursell number not exceeding 46.7.展开更多
In this paper, a new class of triangular summation operators based on the equidistant nodes was constructed. It is proved that this class of operators converges uniformly to arbitrary continuous fimctions with the per...In this paper, a new class of triangular summation operators based on the equidistant nodes was constructed. It is proved that this class of operators converges uniformly to arbitrary continuous fimctions with the period 2π on the whole axis, Fttrthermore, the best approximation order and the highest convergence order are obtained. In contrast to certain operators constructed by Bernstein and Kis in the previous works, the convergence properties of the new operator constructed in this paper are superior.展开更多
In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover,...In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover, the existence, uniqueness and stability of its equilibrium point are also proved. A numerical example is presented to demonstrate the validity and feasibility of the proposed results.展开更多
Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique, a class of Caputo fractional-order BAM neural networks with delays in the ...Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique, a class of Caputo fractional-order BAM neural networks with delays in the leakage terms is investigated in this paper. Some new sufficient conditions are established to guarantee the existence and uniqueness of the nontrivial solution. Moreover, uniform stability of such networks is proposed in fixed time intervals. Finally, an illustrative example is also given to demonstrate the effectiveness of the obtained results.展开更多
文摘The lottery has long captivated the imagination of players worldwide, offering the tantalizing possibility of life-changing wins. While winning the lottery is largely a matter of chance, as lottery drawings are typically random and unpredictable. Some people use the lottery terminal randomly generates numbers for them, some players choose numbers that hold personal significance to them, such as birthdays, anniversaries, or other important dates, some enthusiasts have turned to statistical analysis as a means to analyze past winning numbers identify patterns or frequencies. In this paper, we use order statistics to estimate the probability of specific order of numbers or number combinations being drawn in future drawings.
文摘In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
文摘A uniform high-order method is. presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems ( 1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O (hm+1) accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O (hm+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given.
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
基金Supported by the National Natural Science Foundation of China(11271066)Supported by the Shanghai Education Commission(13ZZ048)
文摘In this paper, a third order(in time) partial differential equation in R^n is con-sidered. By using semigroup method and constructing Lyapunov function, we establish the global existence, asymptotic behavior and uniform attractors in nonhomogeneous case. In addition, we also obtain the results of well-uosedness in semilinear case.
文摘In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and 10. Moreover, we found some regularities of such distributions valid for any sample size.
文摘This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The continuous formulation and its first derivatives were evaluated at some selected grid and off grid points to obtain our proposed method. The superiority of the method over the existing methods is established numerically.
基金supported by the Jiangsu Province Natural Science Foundation for the Young Scholars(Grant No.BK20130827)the National Natural Science Foundation of China(Grant Nos.41076008 and 51479055)
文摘This paper presents a universal fifth-order Stokes solution for steady water waves on the basis of potential theory. It uses a global perturbation parameter, considers a depth uniform current, and thus admits the flexibilities on the definition of the perturbation parameter and on the determination of the wave celerity. The universal solution can be extended to that of Chappelear (1961), confirming the correctness for the universal theory. Furthermore, a particular fifth-order solution is obtained where the wave steepness is used as the perturbation parameter. The applicable range of this solution in shallow depth is analyzed. Comparisons with the Fourier approximated results and with the experimental measurements show that the solution is fairly suited to waves with the Ursell number not exceeding 46.7.
文摘In this paper, a new class of triangular summation operators based on the equidistant nodes was constructed. It is proved that this class of operators converges uniformly to arbitrary continuous fimctions with the period 2π on the whole axis, Fttrthermore, the best approximation order and the highest convergence order are obtained. In contrast to certain operators constructed by Bernstein and Kis in the previous works, the convergence properties of the new operator constructed in this paper are superior.
文摘In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover, the existence, uniqueness and stability of its equilibrium point are also proved. A numerical example is presented to demonstrate the validity and feasibility of the proposed results.
文摘Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique, a class of Caputo fractional-order BAM neural networks with delays in the leakage terms is investigated in this paper. Some new sufficient conditions are established to guarantee the existence and uniqueness of the nontrivial solution. Moreover, uniform stability of such networks is proposed in fixed time intervals. Finally, an illustrative example is also given to demonstrate the effectiveness of the obtained results.