Recommendation system can greatly alleviate the "information overload" in the big data era. Existing recommendation methods, however, typically focus on predicting missing rating values via analyzing user-it...Recommendation system can greatly alleviate the "information overload" in the big data era. Existing recommendation methods, however, typically focus on predicting missing rating values via analyzing user-item dualistic relationship, which neglect an important fact that the latent interests of users can influence their rating behaviors. Moreover, traditional recommendation methods easily suffer from the high dimensional problem and cold-start problem. To address these challenges, in this paper, we propose a PBUED(PLSA-Based Uniform Euclidean Distance) scheme, which utilizes topic model and uniform Euclidean distance to recommend the suitable items for users. The solution first employs probabilistic latent semantic analysis(PLSA) to extract users' interests, users with different interests are divided into different subgroups. Then, the uniform Euclidean distance is adopted to compute the users' similarity in the same interest subset; finally, the missing rating values of data are predicted via aggregating similar neighbors' ratings. We evaluate PBUED on two datasets and experimental results show PBUED can lead to better predicting performance and ranking performance than other approaches.展开更多
An inverted pendulum is a sensitive system of highly coupled parameters, in laboratories, it is popular for modelling nonlinear systems such as mechanisms and control systems, and also for optimizing programmes before...An inverted pendulum is a sensitive system of highly coupled parameters, in laboratories, it is popular for modelling nonlinear systems such as mechanisms and control systems, and also for optimizing programmes before those programmes are applied in real situations. This study aims to find the optimum input setting for a double inverted pendulum(DIP), which requires an appropriate input to be able to stand and to achieve robust stability even when the system model is unknown. Such a DIP input could be widely applied in engineering fields for optimizing unknown systems with a limited budget. Previous studies have used various mathematical approaches to optimize settings for DIP, then have designed control algorithms or physical mathematical models.This study did not adopt a mathematical approach for the DIP controller because our DIP has five input parameters within its nondeterministic system model. This paper proposes a novel algorithm, named Uni Neuro, that integrates neural networks(NNs) and a uniform design(UD) in a model formed by input and response to the experimental data(metamodel). We employed a hybrid UD multiobjective genetic algorithm(HUDMOGA) for obtaining the optimized setting input parameters. The UD was also embedded in the HUDMOGA for enriching the solution set, whereas each chromosome used for crossover, mutation, and generation of the UD was determined through a selection procedure and derived individually. Subsequently, we combined the Euclidean distance and Pareto front to improve the performance of the algorithm. Finally, DIP equipment was used to confirm the settings. The proposed algorithm can produce 9 alternative configured input parameter values to swing-up then standing in robust stability of the DIP from only 25 training data items and 20 optimized simulation results. In comparison to the full factorial design, this design can save considerable experiment time because the metamodel can be formed by only 25 experiments using the UD. Furthermore, the proposed algorithm can be applied to nonlinear systems with multiple constraints.展开更多
基金supported in part by the National High‐tech R&D Program of China (863 Program) under Grant No. 2013AA102301technological project of Henan province (162102210214)
文摘Recommendation system can greatly alleviate the "information overload" in the big data era. Existing recommendation methods, however, typically focus on predicting missing rating values via analyzing user-item dualistic relationship, which neglect an important fact that the latent interests of users can influence their rating behaviors. Moreover, traditional recommendation methods easily suffer from the high dimensional problem and cold-start problem. To address these challenges, in this paper, we propose a PBUED(PLSA-Based Uniform Euclidean Distance) scheme, which utilizes topic model and uniform Euclidean distance to recommend the suitable items for users. The solution first employs probabilistic latent semantic analysis(PLSA) to extract users' interests, users with different interests are divided into different subgroups. Then, the uniform Euclidean distance is adopted to compute the users' similarity in the same interest subset; finally, the missing rating values of data are predicted via aggregating similar neighbors' ratings. We evaluate PBUED on two datasets and experimental results show PBUED can lead to better predicting performance and ranking performance than other approaches.
基金supported by Indonesian Government(No.BPPLN DIKTI 3+1)
文摘An inverted pendulum is a sensitive system of highly coupled parameters, in laboratories, it is popular for modelling nonlinear systems such as mechanisms and control systems, and also for optimizing programmes before those programmes are applied in real situations. This study aims to find the optimum input setting for a double inverted pendulum(DIP), which requires an appropriate input to be able to stand and to achieve robust stability even when the system model is unknown. Such a DIP input could be widely applied in engineering fields for optimizing unknown systems with a limited budget. Previous studies have used various mathematical approaches to optimize settings for DIP, then have designed control algorithms or physical mathematical models.This study did not adopt a mathematical approach for the DIP controller because our DIP has five input parameters within its nondeterministic system model. This paper proposes a novel algorithm, named Uni Neuro, that integrates neural networks(NNs) and a uniform design(UD) in a model formed by input and response to the experimental data(metamodel). We employed a hybrid UD multiobjective genetic algorithm(HUDMOGA) for obtaining the optimized setting input parameters. The UD was also embedded in the HUDMOGA for enriching the solution set, whereas each chromosome used for crossover, mutation, and generation of the UD was determined through a selection procedure and derived individually. Subsequently, we combined the Euclidean distance and Pareto front to improve the performance of the algorithm. Finally, DIP equipment was used to confirm the settings. The proposed algorithm can produce 9 alternative configured input parameter values to swing-up then standing in robust stability of the DIP from only 25 training data items and 20 optimized simulation results. In comparison to the full factorial design, this design can save considerable experiment time because the metamodel can be formed by only 25 experiments using the UD. Furthermore, the proposed algorithm can be applied to nonlinear systems with multiple constraints.