Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen...Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen and carbon cycles in the atmosphere. This study aimed to assess maize CNC and CCC using canopy hyperspectral information and uninformative variable elimination(UVE). Vegetation indices(VIs) and wavelet functions were adopted for estimating CNC and CCC under varying water and nitrogen regimes. Linear, nonlinear, and partial least squares(PLS) regression models were fitted to VIs and wavelet functions to estimate CNC and CCC, and were evaluated for their prediction accuracy.UVE was used to eliminate uninformative variables, improve the prediction accuracy of the models, and simplify the PLS regression models(UVE-PLS). For estimating CNC and CCC, the normalized difference vegetation index(NDVI, based on red edge and NIR wavebands) yielded the highest correlation coefficients(r > 0.88). PLS regression models showed the lowest root mean square error(RMSE) among all models. However, PLS regression models required nine VIs and four wavelet functions, increasing their complexity. UVE was used to retain valid spectral parameters and optimize the PLS regression models.UVE-PLS regression models improved validation accuracy and resulted in more accurate CNC and CCC than the PLS regression models. Thus, canopy spectral reflectance integrated with UVE-PLS can accurately reflect maize leaf nitrogen and carbon status.展开更多
Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis o...Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis of soluble solids content(SSC)in navel oranges.Moving window partial least squares(MW-PLS),Monte Carlo uninformative variables elimination(MC-UVE)and wavelet transform(WT)combined with the MC-UVE method were used to select the spectral variables and develop the calibration models of online analysis of SSC in navel oranges.The performances of these methods were compared for modeling the Vis NIR data sets of navel orange samples.Results show that the WT-MC-UVE methods gave better calibration models with the higher correlation cofficient(r)of 0.89 and lower root mean square error of prediction(RMSEP)of 0.54 at 5 fruits per second.It concluded that Vis NIR spectroscopy coupled with WT-MC-UVE may be a fast and efective tool for online quantitative analysis of SSC in navel oranges.展开更多
基金supported by the National Key Research and Development Program of China (2016YFD0300602)China Agricultural Research System (CARS-04-PS19)Chengdu Science and Technology Project (2020-YF09-00033-SN)。
文摘Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen and carbon cycles in the atmosphere. This study aimed to assess maize CNC and CCC using canopy hyperspectral information and uninformative variable elimination(UVE). Vegetation indices(VIs) and wavelet functions were adopted for estimating CNC and CCC under varying water and nitrogen regimes. Linear, nonlinear, and partial least squares(PLS) regression models were fitted to VIs and wavelet functions to estimate CNC and CCC, and were evaluated for their prediction accuracy.UVE was used to eliminate uninformative variables, improve the prediction accuracy of the models, and simplify the PLS regression models(UVE-PLS). For estimating CNC and CCC, the normalized difference vegetation index(NDVI, based on red edge and NIR wavebands) yielded the highest correlation coefficients(r > 0.88). PLS regression models showed the lowest root mean square error(RMSE) among all models. However, PLS regression models required nine VIs and four wavelet functions, increasing their complexity. UVE was used to retain valid spectral parameters and optimize the PLS regression models.UVE-PLS regression models improved validation accuracy and resulted in more accurate CNC and CCC than the PLS regression models. Thus, canopy spectral reflectance integrated with UVE-PLS can accurately reflect maize leaf nitrogen and carbon status.
基金support provided by National Natural Science Foundation of China (60844007,61178036,21265006)National Science and Technology Support Plan (2008BAD96B04)+1 种基金Special Science and Technology Support Program for Foreign Science and Technology Cooperation Plan (2009BHB15200)Technological expertise and academic leaders training plan of Jiangxi Province (2009DD00700)。
文摘Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis of soluble solids content(SSC)in navel oranges.Moving window partial least squares(MW-PLS),Monte Carlo uninformative variables elimination(MC-UVE)and wavelet transform(WT)combined with the MC-UVE method were used to select the spectral variables and develop the calibration models of online analysis of SSC in navel oranges.The performances of these methods were compared for modeling the Vis NIR data sets of navel orange samples.Results show that the WT-MC-UVE methods gave better calibration models with the higher correlation cofficient(r)of 0.89 and lower root mean square error of prediction(RMSEP)of 0.54 at 5 fruits per second.It concluded that Vis NIR spectroscopy coupled with WT-MC-UVE may be a fast and efective tool for online quantitative analysis of SSC in navel oranges.