Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u...Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.展开更多
We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H...We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].展开更多
In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existen...By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.展开更多
In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article i...In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].展开更多
This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the ...In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the form of -u = f(t, u, v) -v = g(t, u, v) u(0) = u(1) = 0 v(0) = v(1) = 0 in abstract space. Moreover, it is obtained unique solutions for system of equations and error estimations between approximation iteration sequence and exact solution under more simpler conditions. Therefore, some new results which extend and improve the related known works in the literatures are obtained.展开更多
In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed...A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed points for two mappings on a nonempty set with two complex valued metrics are provided. Our outcomes generalize and improve some known results, especially, for instance, Banach contraction principle, Chatterjea-type fixed point theorem and the corresponding fixed point theorems.展开更多
In this article, we investigate the distribution of the zeros and uniqueness of differential-difference polynomialsG(z)=(f^n(f^m(z)-1)∏j=1^d f(z+cj)^vj)^(k)-α(z),H(z)=(f^n(f(z)-1)^m∏j=1^d f(z...In this article, we investigate the distribution of the zeros and uniqueness of differential-difference polynomialsG(z)=(f^n(f^m(z)-1)∏j=1^d f(z+cj)^vj)^(k)-α(z),H(z)=(f^n(f(z)-1)^m∏j=1^d f(z+cj)^vj)^(k)-α(z),where f is transcendental entire function of finite order, cj(j = 1,2,…,d), n,m,d, and vj(j = 1, 2,… , d) are integers, and obtain some theorems, which extended and improved many previous results.展开更多
In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively...In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials sharing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic...In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials sharing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic functions.展开更多
This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,exis...This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.展开更多
The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the lin...The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the linear theory of porous piezoelectric materials are proved for the quasi-static electric field approximation. The uniqueness theorem is also proved without using the positive definiteness of the elastic field. An eigenvalue problem associated with free vibrations of a porous piezoelectric body is stud- ied using the abstract formulation. Some properties of operators are also proved. The problem of frequency shift due to small disturbances, based on an abstract formulation, is studied using a variational and operator approach. A perturbation analysis of a special ease is also given.展开更多
文摘Aim To prove the uniqueness of the viscosity solutions for the initial value problems of one type of second order parabolic partial differential equations: Methods Using comparison theorem. Results and Conclusion If u0 is uniform continuousfunction in RN , F is continuous function in RNx(N) and F is degenerate elliptic, then thisequation has the sole viscosity solution.
基金supported by NSF of Fujian Province,China(S0750013),supported by NSF of Fujian Province,China(2008J0190)the Research Foundation of Ningde Normal University(2008J001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
基金supported by Scientific Research Fund of Heilongjiang Provincial Education Department (11544032)the National Natural Science Foundation of China (10571021, 10701020)
文摘By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.
基金supported by the NSFC(11171184)the NSF of Shandong Province,China(Z2008A01)
文摘In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
基金Supported by the NSF of China(10371065)Supported by the NSF of Zhejiang Province (M103006)
文摘This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
文摘In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the form of -u = f(t, u, v) -v = g(t, u, v) u(0) = u(1) = 0 v(0) = v(1) = 0 in abstract space. Moreover, it is obtained unique solutions for system of equations and error estimations between approximation iteration sequence and exact solution under more simpler conditions. Therefore, some new results which extend and improve the related known works in the literatures are obtained.
文摘In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
文摘A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed points for two mappings on a nonempty set with two complex valued metrics are provided. Our outcomes generalize and improve some known results, especially, for instance, Banach contraction principle, Chatterjea-type fixed point theorem and the corresponding fixed point theorems.
基金supported by National Natural Science Foundation of China(11171184)
文摘In this article, we investigate the distribution of the zeros and uniqueness of differential-difference polynomialsG(z)=(f^n(f^m(z)-1)∏j=1^d f(z+cj)^vj)^(k)-α(z),H(z)=(f^n(f(z)-1)^m∏j=1^d f(z+cj)^vj)^(k)-α(z),where f is transcendental entire function of finite order, cj(j = 1,2,…,d), n,m,d, and vj(j = 1, 2,… , d) are integers, and obtain some theorems, which extended and improved many previous results.
基金Supported by the National Natural Science Foundation of China(11661044)
文摘In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials sharing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic functions.
文摘This paper is concerned with the following second-order vector boundary value problem :x^R=f(t,Sx,x,x'),0〈t〈1,x(0)=A,g(x(1),x'(1))=B,where x,f,g,A and B are n-vectors. Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.
基金the University Grant Commission for providing the financial support for this work (No. 8(42)/2010 (MRP/NRCB))
文摘The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the linear theory of porous piezoelectric materials are proved for the quasi-static electric field approximation. The uniqueness theorem is also proved without using the positive definiteness of the elastic field. An eigenvalue problem associated with free vibrations of a porous piezoelectric body is stud- ied using the abstract formulation. Some properties of operators are also proved. The problem of frequency shift due to small disturbances, based on an abstract formulation, is studied using a variational and operator approach. A perturbation analysis of a special ease is also given.