BACKGROUND:Amyotrophic lateral sclerosis (ALS) is the most common of all the motor neuron diseases and the absence of a biologic marker has made both diagnosis and tracking evolution of the disease difficult, Elect...BACKGROUND:Amyotrophic lateral sclerosis (ALS) is the most common of all the motor neuron diseases and the absence of a biologic marker has made both diagnosis and tracking evolution of the disease difficult, Electrodiagnostic tests play a fundamental role in quantifying pathological changes in the motor unit pool.OBJECTIVE:We assessed distal-proximal Motor Unit (MU) loss and changes using the method of motor unit number estimation (MUNE).DESIGN, TIME AND SETTING:A case-control study was performed at the Department of Neuroscience, Pisa University Medical School, Italy from December 1999 to November 2009. PARTICIPANTS:A total of 50 ALS patients were recruited, 30 males:mean age (59.6 ± 13.3) years; 20 females:mean age (63.9 ± 11.7) years; range (30-82) years; all patients had probable or definite ALS. Thirty healthy volunteers were recruited from department staffs, including 20 males and 10 females; mean age (57.7 ± 13.8) years served as controls.METHODS:MUNE was performed for both the biceps brachii and abductor digiti minimi muscles of the same side. The technique used relayed substantially on manual incremental stimulation of the motor nerve, known as the McComas technique (50 ms sweep duration, a gain of 2 mV/Div for M wave, 0.5 mV/Div for each step; filters 10-20 kHz).MAIN OUTCOME MEASURES:MUNE results were measured.RESULTS:Functioning MU numbers, measured by MUNE, decreased in the biceps brachii and abductor digiti minimi muscles over the entire one-year follow-up period (one assessment every three months) compared with baseline determination, the rate of MU decrease was similar in both muscles, but steeper distally.CONCLUSION:MUNE is a feasible method for ALS patients both proximally and distally to track changes over time in muscle MUs during the disease's evolution.展开更多
The approximation capability of RBF networks is investigated using a test function and a fixed finite number of training data. The test function used allows to confirm the recently introducedconcept of second derivati...The approximation capability of RBF networks is investigated using a test function and a fixed finite number of training data. The test function used allows to confirm the recently introducedconcept of second derivative dependent placement of RBF centers. Different Gaussian RBF networksare trained varying the width and the number of centers (number of hidden units). The dependenceof the approximation error on these network parameters is studied experimentally.展开更多
In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-respo...In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.展开更多
The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy produc...The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy production rate and field synergy factor.The results show that both heat transfer and entropy production unit number in four tubes decrease with water temperature increasing.Heat transfer and entropy production unit number in multiple tubes( i. e.,triple straight tube and double helix tube) is higher than their single counterparts; the non-dimensional entropy production rate increases with water temperature. Non-dimensional entropy production rate of triple straight tube and double helix tube is far below the single tube. Field synergy factor of double helix tube is much higher than that of the triple straight tube under the same condition. Further experiment was carried out in double helix tube,under various CO_2 pressure and inlet water temperature,the results are analyzed and reported in this paper.展开更多
Cubic shaped CaCO3 particles with mean size of 30-40nm were prepared by intermittent carbonation process without any additives. It was found that the flow rate of CO2 has no distinct influence on the particle size in ...Cubic shaped CaCO3 particles with mean size of 30-40nm were prepared by intermittent carbonation process without any additives. It was found that the flow rate of CO2 has no distinct influence on the particle size in the range of 30 120ml·min^-1 under conditions of 13℃ and stirring rate of 680r·min^-1. A further increase of flow rate makes the particles larger. When CO2 flow rate is 70ml·min^-1, a high agitation rate is in favor of the reduction of the crystal size in the range of 70-680 r·min^-1. When flow rate is 120 ml·min^-1, the particles prepared at agitation rates of 680r·min^-1 and 280r·min^-1 have similar sizes, while products prepared at 90r·min^-1 have larger size.展开更多
In the issue of rainfall estimation by radar through the necessary relationship between radar reflectivity Z and rain rate R (Z-R), the main limitation is attributed to the variability of this relationship. Indeed, se...In the issue of rainfall estimation by radar through the necessary relationship between radar reflectivity Z and rain rate R (Z-R), the main limitation is attributed to the variability of this relationship. Indeed, several pre-vious studies have shown the great variability of this relationship in space and time, from a rainfall event to another and even within a single rainfall event. Recent studies have shown that the variability of raindrop size distributions and thereby Z-R relationships is therefore, more the result of complex dynamic, thermody-namic and microphysical processes within rainfall systems than a convective/stratiform classification of the ground rainfall signature. The raindrop number and size at ground being the resultant of various processes mentioned above, a suitable approach would be to analyze their variability in relation to that of Z-R relation-ship. In this study, we investigated the total raindrop concentration number NT and the median volume di-ameter D0 used in numerous studies, and have shown that the combination of these two ‘observed’ parame-ters appears to be an interesting approach to better understand the variability of the Z-R relationships in the rainfall events, without assuming a certain analytical raindrop size distribution model (exponential, gamma, or log-normal). The present study is based on the analysis of disdrometer data collected at different seasons and places in Africa, and aims to show the degree of the raindrop size and number implication in regard to the Z-R relationships variability.展开更多
The yield and yield components of Japonica variety Tongjing 981 under different density and fertilization levels were studied through regression and correlation and path analysis. The results showed that the number of...The yield and yield components of Japonica variety Tongjing 981 under different density and fertilization levels were studied through regression and correlation and path analysis. The results showed that the number of panicles per unit area, number of filled grains per panicle and 1 000-grain weight all had very significant yield increasing effects, and the number of panicles per unit area played a leading role. However, the yield increasing effects of the number of panicles per unit area and number of filled grains per panicle are equally important when the basic seedlings are more or the N fertilizer application rate is large. In practical production, a major factor should be determined among the yield components, and rational cultivation measures should be taken accordingly, to improve yield.展开更多
Designing materials that mitigate impacts effectively are crucial for protecting people and structures.Here,a single-resonator metamaterial with negative mass characteristics is proposed for impact mitigation,and nume...Designing materials that mitigate impacts effectively are crucial for protecting people and structures.Here,a single-resonator metamaterial with negative mass characteristics is proposed for impact mitigation,and numerical analysis of wave propagation shows explicitly how the spring stiffness and number of unit cells influence that mitigation.The results show clearly that a metamaterial with differing microstructural stiffness is better at mitigating the effect of a shock wave than one with a unique stiffness.Also,there is a critical number of unit cells beyond which the shock wave is not attenuated further,but the fabrication complexity increases.In the 40 groups of microstructural regions in this example,the attenuation effect no longer increases when there are more than 35 groups.This work offers guidance for microstructure designs in metamaterials and provides new ideas for using metamaterials to mitigate shock waves.展开更多
Identity-based signature has become an important technique for lightweight authentication as soon as it was proposed in 1984.Thereafter,identity-based signature schemes based on the integer factorization problem and d...Identity-based signature has become an important technique for lightweight authentication as soon as it was proposed in 1984.Thereafter,identity-based signature schemes based on the integer factorization problem and discrete logarithm problem were proposed one after another.Nevertheless,the rapid development of quantum computers makes them insecure.Recently,many efforts have been made to construct identity-based signatures over lattice assumptions against attacks in the quantum era.However,their efficiency is not very satisfactory.In this study,an efficient identity-based signature scheme is presented over the number theory research unit(NTRU) lattice assumption.The new scheme is more efficient than other lattice-and identity-based signature schemes.The new scheme proves to be unforgeable against the adaptively chosen message attack in the random oracle model under the hardness of the γ-shortest vector problem on the NTRU lattice.展开更多
Increased power density in modern miniaturized electronics caused difficulty in keeping electronic performance effective.This challenge leads to the search for high-performance compact heat exchanger as one of the the...Increased power density in modern miniaturized electronics caused difficulty in keeping electronic performance effective.This challenge leads to the search for high-performance compact heat exchanger as one of the thermal management solutions.Conventionally manufactured heat exchangers had limitations that thwart the develop-ment of geometrically complex heat exchangers which are capable of exploiting topological aspects to enhance thermal performance.Subsequently,additive manufacturing(AM)is proposed as a powerful fabrication tech-nique for compact heat exchanger based on the mathematically known triply periodic minimal surfaces(TPMS).In this work,we present 3D compact crossflow heat exchanger computational fluid dynamics(CFD)modelling of geometrically complex structures based on TPMS using STARCCM+CFD platform.Moreover,CFD modelling is used to obtain new characteristics maps that relate heat transfer effectiveness(Ɛ)and number of transfer units for the proposed heat exchanger.The convection heat transfer coefficient,pressure drop,and inlet and outlet fluid temperature are all examined.展开更多
基金Supported by the Italian MIUR PRIN Grant year 2006,# 2006062332_002
文摘BACKGROUND:Amyotrophic lateral sclerosis (ALS) is the most common of all the motor neuron diseases and the absence of a biologic marker has made both diagnosis and tracking evolution of the disease difficult, Electrodiagnostic tests play a fundamental role in quantifying pathological changes in the motor unit pool.OBJECTIVE:We assessed distal-proximal Motor Unit (MU) loss and changes using the method of motor unit number estimation (MUNE).DESIGN, TIME AND SETTING:A case-control study was performed at the Department of Neuroscience, Pisa University Medical School, Italy from December 1999 to November 2009. PARTICIPANTS:A total of 50 ALS patients were recruited, 30 males:mean age (59.6 ± 13.3) years; 20 females:mean age (63.9 ± 11.7) years; range (30-82) years; all patients had probable or definite ALS. Thirty healthy volunteers were recruited from department staffs, including 20 males and 10 females; mean age (57.7 ± 13.8) years served as controls.METHODS:MUNE was performed for both the biceps brachii and abductor digiti minimi muscles of the same side. The technique used relayed substantially on manual incremental stimulation of the motor nerve, known as the McComas technique (50 ms sweep duration, a gain of 2 mV/Div for M wave, 0.5 mV/Div for each step; filters 10-20 kHz).MAIN OUTCOME MEASURES:MUNE results were measured.RESULTS:Functioning MU numbers, measured by MUNE, decreased in the biceps brachii and abductor digiti minimi muscles over the entire one-year follow-up period (one assessment every three months) compared with baseline determination, the rate of MU decrease was similar in both muscles, but steeper distally.CONCLUSION:MUNE is a feasible method for ALS patients both proximally and distally to track changes over time in muscle MUs during the disease's evolution.
文摘The approximation capability of RBF networks is investigated using a test function and a fixed finite number of training data. The test function used allows to confirm the recently introducedconcept of second derivative dependent placement of RBF centers. Different Gaussian RBF networksare trained varying the width and the number of centers (number of hidden units). The dependenceof the approximation error on these network parameters is studied experimentally.
基金Project (No. 60372076) supported by the National Natural ScienceFoundation of China
文摘In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.
基金Hujiang Foundation of China(No.D14003)Yangtze River Delta Technology Joint Research,China(No.10195811000)
文摘The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy production rate and field synergy factor.The results show that both heat transfer and entropy production unit number in four tubes decrease with water temperature increasing.Heat transfer and entropy production unit number in multiple tubes( i. e.,triple straight tube and double helix tube) is higher than their single counterparts; the non-dimensional entropy production rate increases with water temperature. Non-dimensional entropy production rate of triple straight tube and double helix tube is far below the single tube. Field synergy factor of double helix tube is much higher than that of the triple straight tube under the same condition. Further experiment was carried out in double helix tube,under various CO_2 pressure and inlet water temperature,the results are analyzed and reported in this paper.
文摘Cubic shaped CaCO3 particles with mean size of 30-40nm were prepared by intermittent carbonation process without any additives. It was found that the flow rate of CO2 has no distinct influence on the particle size in the range of 30 120ml·min^-1 under conditions of 13℃ and stirring rate of 680r·min^-1. A further increase of flow rate makes the particles larger. When CO2 flow rate is 70ml·min^-1, a high agitation rate is in favor of the reduction of the crystal size in the range of 70-680 r·min^-1. When flow rate is 120 ml·min^-1, the particles prepared at agitation rates of 680r·min^-1 and 280r·min^-1 have similar sizes, while products prepared at 90r·min^-1 have larger size.
文摘In the issue of rainfall estimation by radar through the necessary relationship between radar reflectivity Z and rain rate R (Z-R), the main limitation is attributed to the variability of this relationship. Indeed, several pre-vious studies have shown the great variability of this relationship in space and time, from a rainfall event to another and even within a single rainfall event. Recent studies have shown that the variability of raindrop size distributions and thereby Z-R relationships is therefore, more the result of complex dynamic, thermody-namic and microphysical processes within rainfall systems than a convective/stratiform classification of the ground rainfall signature. The raindrop number and size at ground being the resultant of various processes mentioned above, a suitable approach would be to analyze their variability in relation to that of Z-R relation-ship. In this study, we investigated the total raindrop concentration number NT and the median volume di-ameter D0 used in numerous studies, and have shown that the combination of these two ‘observed’ parame-ters appears to be an interesting approach to better understand the variability of the Z-R relationships in the rainfall events, without assuming a certain analytical raindrop size distribution model (exponential, gamma, or log-normal). The present study is based on the analysis of disdrometer data collected at different seasons and places in Africa, and aims to show the degree of the raindrop size and number implication in regard to the Z-R relationships variability.
基金Supported by National Spark Program(2013GA690123)Agricultural New Variety Postsubsidy Project of Major Research and Development Programof Jiangsu Province(BE2016398)~~
文摘The yield and yield components of Japonica variety Tongjing 981 under different density and fertilization levels were studied through regression and correlation and path analysis. The results showed that the number of panicles per unit area, number of filled grains per panicle and 1 000-grain weight all had very significant yield increasing effects, and the number of panicles per unit area played a leading role. However, the yield increasing effects of the number of panicles per unit area and number of filled grains per panicle are equally important when the basic seedlings are more or the N fertilizer application rate is large. In practical production, a major factor should be determined among the yield components, and rational cultivation measures should be taken accordingly, to improve yield.
基金the support from the National Natural Science Foundation of China(No.11772192).
文摘Designing materials that mitigate impacts effectively are crucial for protecting people and structures.Here,a single-resonator metamaterial with negative mass characteristics is proposed for impact mitigation,and numerical analysis of wave propagation shows explicitly how the spring stiffness and number of unit cells influence that mitigation.The results show clearly that a metamaterial with differing microstructural stiffness is better at mitigating the effect of a shock wave than one with a unique stiffness.Also,there is a critical number of unit cells beyond which the shock wave is not attenuated further,but the fabrication complexity increases.In the 40 groups of microstructural regions in this example,the attenuation effect no longer increases when there are more than 35 groups.This work offers guidance for microstructure designs in metamaterials and provides new ideas for using metamaterials to mitigate shock waves.
基金supported by the National Natural Science Foundation of China(Nos.61173151,61472309,and 61303217)the Fundamental Research Funds for the Central Universities,China(No.JB140115)the Natural Science Foundation of Shaanxi Province,China(Nos.2013JQ8002 and 2014JQ8313)
文摘Identity-based signature has become an important technique for lightweight authentication as soon as it was proposed in 1984.Thereafter,identity-based signature schemes based on the integer factorization problem and discrete logarithm problem were proposed one after another.Nevertheless,the rapid development of quantum computers makes them insecure.Recently,many efforts have been made to construct identity-based signatures over lattice assumptions against attacks in the quantum era.However,their efficiency is not very satisfactory.In this study,an efficient identity-based signature scheme is presented over the number theory research unit(NTRU) lattice assumption.The new scheme is more efficient than other lattice-and identity-based signature schemes.The new scheme proves to be unforgeable against the adaptively chosen message attack in the random oracle model under the hardness of the γ-shortest vector problem on the NTRU lattice.
基金supported by the Khalifa Uni-versity under Awards No.CIRA-2018-051 and No.RCII-2019-003.
文摘Increased power density in modern miniaturized electronics caused difficulty in keeping electronic performance effective.This challenge leads to the search for high-performance compact heat exchanger as one of the thermal management solutions.Conventionally manufactured heat exchangers had limitations that thwart the develop-ment of geometrically complex heat exchangers which are capable of exploiting topological aspects to enhance thermal performance.Subsequently,additive manufacturing(AM)is proposed as a powerful fabrication tech-nique for compact heat exchanger based on the mathematically known triply periodic minimal surfaces(TPMS).In this work,we present 3D compact crossflow heat exchanger computational fluid dynamics(CFD)modelling of geometrically complex structures based on TPMS using STARCCM+CFD platform.Moreover,CFD modelling is used to obtain new characteristics maps that relate heat transfer effectiveness(Ɛ)and number of transfer units for the proposed heat exchanger.The convection heat transfer coefficient,pressure drop,and inlet and outlet fluid temperature are all examined.