The model of the universal Teichmuller union of infinite disconnected components. between different components is 0, and the every other component is 2. space by the derivatives of logarithm is the In this paper, it i...The model of the universal Teichmuller union of infinite disconnected components. between different components is 0, and the every other component is 2. space by the derivatives of logarithm is the In this paper, it is proved that the distance distance from the center of a component to展开更多
The authors identify the function space which is the tangent space to the integrable Teichmfiller space. By means of quasiconformal deformation and an operator induced by a Zygmund function, several characterizations ...The authors identify the function space which is the tangent space to the integrable Teichmfiller space. By means of quasiconformal deformation and an operator induced by a Zygmund function, several characterizations of this function space are obtained.展开更多
In this paper,the inner radius of univalency of hyperbolic domains by pre-Schwarzian derivative is studied,and some general formulas for the lower bound of the inner radius are established. As their applications,the l...In this paper,the inner radius of univalency of hyperbolic domains by pre-Schwarzian derivative is studied,and some general formulas for the lower bound of the inner radius are established. As their applications,the lower bounds of inner radiuses for angular domains and strongly starlike domains are obtained.展开更多
In this paper, we get a lower bound of inner radius of univalency of Schwarzian derivative by means of the norm of pre-Schwarzian derivative. Furthermore, we apply the theory of Universal Teichmuller Space to explain ...In this paper, we get a lower bound of inner radius of univalency of Schwarzian derivative by means of the norm of pre-Schwarzian derivative. Furthermore, we apply the theory of Universal Teichmuller Space to explain its geometric meaning which shows the relationship between the inner radius in Universal Teichmuller Space embedded by Schwarzian derivative and the norm defined in Universal Teichmuller Space embedded by pre-Schwarzian derivative.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10271029).
文摘The model of the universal Teichmuller union of infinite disconnected components. between different components is 0, and the every other component is 2. space by the derivatives of logarithm is the In this paper, it is proved that the distance distance from the center of a component to
基金supported by the National Natural Science Foundation of China(Nos.11371268,11171080,11601100,11701459)the Jiangsu Provincial Natural Science Foundation of China(No.BK20141189)the Ph.D Research Startup Foundation of Guizhou Normal University(No.11904-05032130006)
文摘The authors identify the function space which is the tangent space to the integrable Teichmfiller space. By means of quasiconformal deformation and an operator induced by a Zygmund function, several characterizations of this function space are obtained.
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.10571028).
文摘In this paper,the inner radius of univalency of hyperbolic domains by pre-Schwarzian derivative is studied,and some general formulas for the lower bound of the inner radius are established. As their applications,the lower bounds of inner radiuses for angular domains and strongly starlike domains are obtained.
基金Supported by China Postdoctoral Science Foundation funded project (No. 20080430571)Jiangxi Educa tional Bureau Foundation (No. G JJ08163)
文摘In this paper, we get a lower bound of inner radius of univalency of Schwarzian derivative by means of the norm of pre-Schwarzian derivative. Furthermore, we apply the theory of Universal Teichmuller Space to explain its geometric meaning which shows the relationship between the inner radius in Universal Teichmuller Space embedded by Schwarzian derivative and the norm defined in Universal Teichmuller Space embedded by pre-Schwarzian derivative.