The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ...The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.展开更多
A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is a...A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is aimed at finding a solution to the Cosmological Constant (CC) problem by attempting to quantize space-time and linking the vacuum energy density at the beginning of the universe and the current energy density. The CC problem is the famous disagreement of approximately 120 orders of magnitude between the theoretical energy density at the Planck scale and the indirectly measured cosmological energy density. Same framework is also used to determine the mass of the proton and neutron from first principles. The only input is the up quark (u-quark) mass, or precisely, the 1st generation quarks. The method assumes that the u-quark is twice as massive as the down-quark (d-quark). The gap equation is the starting point, introduced in its simplest form. The main idea is to assume that all the particles and fields in the unit universe are divided into quarks and everything else. Everything else means all fields and forces present in the universe. It is assumed that everything else can be “quark-quantized”;that is, assume that they can be quantized into similar sizeable u-quarks and/or it’s associated interactions and relations. The result is surprisingly almost as measured and known values. The proton structure and mass composition are also analysed, showing that it likely has more than 3 quarks and more than 3 valence quarks. It is also possible to estimate the percentage of dark matter, dark energy, ordinary matter, and anti-matter. Finally, the cosmological constant problem or puzzle is resolved by connecting the vacuum energy density of Quantum Field Theory (5.1E+96 kg/m<sup>3</sup>) and the energy density of General Relativity (1.04E−26 kg/m<sup>3</sup>). Upon maturation, this framework can serve as a bridging platform between Quantum Field Theory and General Relativity. Other aspects of natures’ field theories can be successfully ported to the platform. It also increases the chances of solving some of the unanswered questions in physics.展开更多
This work extends the author’s two previous works (2015), Journal of Modern Physics, 6, 78-87, and 1360-1370, by obtaining the index of refraction n of the dark energy for additional values of the cosmological densit...This work extends the author’s two previous works (2015), Journal of Modern Physics, 6, 78-87, and 1360-1370, by obtaining the index of refraction n of the dark energy for additional values of the cosmological density parameters, and for the two methods of obtaining n: least squares fit, and electromagnetic theory. Comparison of the alternative model with the accelerating universe for the new values of the density parameters and n is given in two tables. The new values for n are used to obtain a range of ages for the Einstein de Sitter (EdS) universe. It is shown that the EdS universe must be older than the comparison accelerating universe. This requirement is met for the Planck 2015 value of the Hubble constant, corrected for the speed of light reduction by n. A supporting measurement as well as a disagreeing measurement is also discussed. Possible support from a stellar age determination is also discussed. It is shown that the expression obtained earlier for the increased apparent magnitude of the SNe Ia provides as good a fit for a closed universe with Ω(tot = 1.005) , as it does for the flat EdS universe. Comparison is presented in a third table. An upper bound on Ω<sub>Λ</sub> is given for a closed universe that eventually collapses back on itself that is too small for the value needed for the accelerating universe.展开更多
In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Uni...In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.展开更多
This work continues the previous study (2018) Journal of Modern Physics. 9, 1827-1837, that proposes that the disagreement arises because the cosmic microwave background (CMB) value for the Hubble constant <em>H...This work continues the previous study (2018) Journal of Modern Physics. 9, 1827-1837, that proposes that the disagreement arises because the cosmic microwave background (CMB) value for the Hubble constant <em>H</em><sub><em>0</em></sub> is actually for a universe which is decelerating rather than accelerating. It is shown that when <em>H</em><sub><em>0</em></sub> of Freedman et al. (2019) Astrophysical Journal, 882: 34 (24 pp.) is re-determined for redshift <em>z </em>= 0.07, by replacing <em>q</em><sub><em>0 </em></sub>= <span style="white-space:nowrap;">−</span>0.53 with <em style="white-space:normal;">q</em><sub style="white-space:normal;"><em>0 </em></sub><span style="white-space:normal;">= <span style="white-space:nowrap;">−</span>0.5</span>, the new lower value is in excellent agreement (0.1%) with the CMB <em>H</em><sub><em>0</em></sub>. The model is modified to include the clustering of galaxies, and the recognition that there are clusters that do not experience the Hubble expansion, such as the Local Group, and hence, in accordance with the model, within the Local Group the speed of light is <em>c</em>. The bearing of this result on the neutrino and light time delay from SN1987a is discussed. It is suggested that the possible emission of a neutrino from the blazar TXS-0506+56, that was flaring at the time, as well as possible neutrino emission earlier, may arise instead from a more distant source that happens to be, angle-wise, near the blazar, and hence the correlation is accidental. The model is further modified to allow for a variable index of refraction, and a comparison with the ΛCDM model is given. The age of the universe for different values of<em> H</em><sub><em>0</em></sub> is studied, and comparison with the ages of the oldest stars in the Milky Way is discussed. Also, gravitational wave determination of <em>H</em><sub><em>0</em></sub> is briefly discussed.展开更多
There is an alternate cause for the decay rate defined by Edwin Hubble’s Cosmological Constant Theory. It can be proposed because inward motion is observed in the local Galaxies||Star groups around the Milky Way. The...There is an alternate cause for the decay rate defined by Edwin Hubble’s Cosmological Constant Theory. It can be proposed because inward motion is observed in the local Galaxies||Star groups around the Milky Way. The recession velocity of Galaxies farther out of is reasoned entirely from the increasing redshift in the frequency. The smaller the image of observed Galaxy/Cluster objects, the greater the downward shift in frequency of all Electro-Magnetic signals [EM]. An alternate cause for that downward shift could be through the absorption and re-emission through matter, leading to the absorption of some fraction of the energy quanta. There is nowhere in our Local Universe that is both absolutely devoid of matter and the continual formation of objects of all scales. If redshift was because of space expansion, it would increase the distance that signal had to travel. So a signal from GN-z11 stellar structure at 13.4 billion light years [LY] would take 13.4 billion years to travel. Assuming 13.8 billion years since the Big Bang would mean GN-z11 object travelled 13.4 billion LY in 400 million years. A current value for the Hubble constant is: H<sub>0</sub>=(67.8 ± 0.77) km s <sup>-1</sup> Mpc <sup>-1</sup> a frequency is shift of 67.8/c over a single Mpc. An alternate expression would be a shift factor 2.261560E-5 over a distance of 3.08567E22 m or a redshift of 7.32923E-28 over a metre because of passage through a medium. Dark matter is a currently accepted phenomenon. It is proposed that properties include redshift’s all normal matters that are put upon EM||Boson signals at the fraction stated above. The signal reduction|| frequency distortion happens at a quantum level for each occurrence, and so is not detectable until passage through millions of LY of Dark Matter. Support for this alternate supposition is reasoned from the fact that the M31 Galaxy and the NGC 300 Galaxy are at distances inconsistent with their Hubble recession velocity.展开更多
<p> Observing galaxies receding from each other, Hubble found the universe’s expansion in 1929. His law that gives the receding speed as a function of distance implies a factor called Hubble constant <em>...<p> Observing galaxies receding from each other, Hubble found the universe’s expansion in 1929. His law that gives the receding speed as a function of distance implies a factor called Hubble constant <em>H</em><sub><em>0</em></sub>. We want to validate our theoretical value of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 72.09548580(32) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>s<span style="white-space:nowrap;"><span style="white-space:nowrap;"><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></sup></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup> with a new cosmological model found in 2019. This model predicts what may look like two possible values of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub>. According to this model, the correct equation of the apparent age of the universe gives ~ 14.14 billion years. In approximation, we get the well-known equation 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 13.56 billion years. When we force these ages to fit the 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> formula, it gives two different Hubble constant values of ~69.2 and 72.1 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span><span style="white-space:nowrap;">sdot;</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup>. When we apply a theoretical correction factor of <em>η</em> ≈ 1.042516951 on the first value, both target the second one. We found 42 equations of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> linking different physics constants. Some are used to measure <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> as a function of the average temperature<em> T</em> of the Cosmological Microwave Background and the universal gravitational constant <em>G</em>: </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.06(90) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<span style="vertical-align:super;white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em>T </em>by Cobra probe & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 71.95(50) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1 </sup>from<em> T</em> by Partridge & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.086(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-1 </span></span></span></sup>from <em>G</em> & Equation (34) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.105(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em></em><em>G</em> & Equations (74), (75), or (76). With 508 published values, <em>H</em><sub><em>0</em></sub> ≈ 72.0957 ± 0.33 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> seems to be the “ideal” statistical result. It validates our model and our theoretical <em>H</em><sub><em>0</em></sub> value which are useful to find various interactions with the different constants. Our model also explains the ambiguity between the different universe’s age measurements and seems to unlock a tension between two <em>H</em><sub><em>0</em></sub> values. </p>展开更多
文摘The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.
文摘A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is aimed at finding a solution to the Cosmological Constant (CC) problem by attempting to quantize space-time and linking the vacuum energy density at the beginning of the universe and the current energy density. The CC problem is the famous disagreement of approximately 120 orders of magnitude between the theoretical energy density at the Planck scale and the indirectly measured cosmological energy density. Same framework is also used to determine the mass of the proton and neutron from first principles. The only input is the up quark (u-quark) mass, or precisely, the 1st generation quarks. The method assumes that the u-quark is twice as massive as the down-quark (d-quark). The gap equation is the starting point, introduced in its simplest form. The main idea is to assume that all the particles and fields in the unit universe are divided into quarks and everything else. Everything else means all fields and forces present in the universe. It is assumed that everything else can be “quark-quantized”;that is, assume that they can be quantized into similar sizeable u-quarks and/or it’s associated interactions and relations. The result is surprisingly almost as measured and known values. The proton structure and mass composition are also analysed, showing that it likely has more than 3 quarks and more than 3 valence quarks. It is also possible to estimate the percentage of dark matter, dark energy, ordinary matter, and anti-matter. Finally, the cosmological constant problem or puzzle is resolved by connecting the vacuum energy density of Quantum Field Theory (5.1E+96 kg/m<sup>3</sup>) and the energy density of General Relativity (1.04E−26 kg/m<sup>3</sup>). Upon maturation, this framework can serve as a bridging platform between Quantum Field Theory and General Relativity. Other aspects of natures’ field theories can be successfully ported to the platform. It also increases the chances of solving some of the unanswered questions in physics.
文摘This work extends the author’s two previous works (2015), Journal of Modern Physics, 6, 78-87, and 1360-1370, by obtaining the index of refraction n of the dark energy for additional values of the cosmological density parameters, and for the two methods of obtaining n: least squares fit, and electromagnetic theory. Comparison of the alternative model with the accelerating universe for the new values of the density parameters and n is given in two tables. The new values for n are used to obtain a range of ages for the Einstein de Sitter (EdS) universe. It is shown that the EdS universe must be older than the comparison accelerating universe. This requirement is met for the Planck 2015 value of the Hubble constant, corrected for the speed of light reduction by n. A supporting measurement as well as a disagreeing measurement is also discussed. Possible support from a stellar age determination is also discussed. It is shown that the expression obtained earlier for the increased apparent magnitude of the SNe Ia provides as good a fit for a closed universe with Ω(tot = 1.005) , as it does for the flat EdS universe. Comparison is presented in a third table. An upper bound on Ω<sub>Λ</sub> is given for a closed universe that eventually collapses back on itself that is too small for the value needed for the accelerating universe.
文摘In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.
文摘This work continues the previous study (2018) Journal of Modern Physics. 9, 1827-1837, that proposes that the disagreement arises because the cosmic microwave background (CMB) value for the Hubble constant <em>H</em><sub><em>0</em></sub> is actually for a universe which is decelerating rather than accelerating. It is shown that when <em>H</em><sub><em>0</em></sub> of Freedman et al. (2019) Astrophysical Journal, 882: 34 (24 pp.) is re-determined for redshift <em>z </em>= 0.07, by replacing <em>q</em><sub><em>0 </em></sub>= <span style="white-space:nowrap;">−</span>0.53 with <em style="white-space:normal;">q</em><sub style="white-space:normal;"><em>0 </em></sub><span style="white-space:normal;">= <span style="white-space:nowrap;">−</span>0.5</span>, the new lower value is in excellent agreement (0.1%) with the CMB <em>H</em><sub><em>0</em></sub>. The model is modified to include the clustering of galaxies, and the recognition that there are clusters that do not experience the Hubble expansion, such as the Local Group, and hence, in accordance with the model, within the Local Group the speed of light is <em>c</em>. The bearing of this result on the neutrino and light time delay from SN1987a is discussed. It is suggested that the possible emission of a neutrino from the blazar TXS-0506+56, that was flaring at the time, as well as possible neutrino emission earlier, may arise instead from a more distant source that happens to be, angle-wise, near the blazar, and hence the correlation is accidental. The model is further modified to allow for a variable index of refraction, and a comparison with the ΛCDM model is given. The age of the universe for different values of<em> H</em><sub><em>0</em></sub> is studied, and comparison with the ages of the oldest stars in the Milky Way is discussed. Also, gravitational wave determination of <em>H</em><sub><em>0</em></sub> is briefly discussed.
文摘There is an alternate cause for the decay rate defined by Edwin Hubble’s Cosmological Constant Theory. It can be proposed because inward motion is observed in the local Galaxies||Star groups around the Milky Way. The recession velocity of Galaxies farther out of is reasoned entirely from the increasing redshift in the frequency. The smaller the image of observed Galaxy/Cluster objects, the greater the downward shift in frequency of all Electro-Magnetic signals [EM]. An alternate cause for that downward shift could be through the absorption and re-emission through matter, leading to the absorption of some fraction of the energy quanta. There is nowhere in our Local Universe that is both absolutely devoid of matter and the continual formation of objects of all scales. If redshift was because of space expansion, it would increase the distance that signal had to travel. So a signal from GN-z11 stellar structure at 13.4 billion light years [LY] would take 13.4 billion years to travel. Assuming 13.8 billion years since the Big Bang would mean GN-z11 object travelled 13.4 billion LY in 400 million years. A current value for the Hubble constant is: H<sub>0</sub>=(67.8 ± 0.77) km s <sup>-1</sup> Mpc <sup>-1</sup> a frequency is shift of 67.8/c over a single Mpc. An alternate expression would be a shift factor 2.261560E-5 over a distance of 3.08567E22 m or a redshift of 7.32923E-28 over a metre because of passage through a medium. Dark matter is a currently accepted phenomenon. It is proposed that properties include redshift’s all normal matters that are put upon EM||Boson signals at the fraction stated above. The signal reduction|| frequency distortion happens at a quantum level for each occurrence, and so is not detectable until passage through millions of LY of Dark Matter. Support for this alternate supposition is reasoned from the fact that the M31 Galaxy and the NGC 300 Galaxy are at distances inconsistent with their Hubble recession velocity.
文摘<p> Observing galaxies receding from each other, Hubble found the universe’s expansion in 1929. His law that gives the receding speed as a function of distance implies a factor called Hubble constant <em>H</em><sub><em>0</em></sub>. We want to validate our theoretical value of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 72.09548580(32) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>s<span style="white-space:nowrap;"><span style="white-space:nowrap;"><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></sup></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup> with a new cosmological model found in 2019. This model predicts what may look like two possible values of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub>. According to this model, the correct equation of the apparent age of the universe gives ~ 14.14 billion years. In approximation, we get the well-known equation 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 13.56 billion years. When we force these ages to fit the 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> formula, it gives two different Hubble constant values of ~69.2 and 72.1 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span><span style="white-space:nowrap;">sdot;</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup>. When we apply a theoretical correction factor of <em>η</em> ≈ 1.042516951 on the first value, both target the second one. We found 42 equations of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> linking different physics constants. Some are used to measure <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> as a function of the average temperature<em> T</em> of the Cosmological Microwave Background and the universal gravitational constant <em>G</em>: </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.06(90) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<span style="vertical-align:super;white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em>T </em>by Cobra probe & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 71.95(50) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1 </sup>from<em> T</em> by Partridge & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.086(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-1 </span></span></span></sup>from <em>G</em> & Equation (34) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.105(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em></em><em>G</em> & Equations (74), (75), or (76). With 508 published values, <em>H</em><sub><em>0</em></sub> ≈ 72.0957 ± 0.33 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> seems to be the “ideal” statistical result. It validates our model and our theoretical <em>H</em><sub><em>0</em></sub> value which are useful to find various interactions with the different constants. Our model also explains the ambiguity between the different universe’s age measurements and seems to unlock a tension between two <em>H</em><sub><em>0</em></sub> values. </p>