A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presente...A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.展开更多
This work proposes a robust fault detection and isolation scheme for discrete-time systems subject to actuator faults,in which a bank of H_/H∞ fault detection unknown input observers(UIOs) and a zonotopic threshold a...This work proposes a robust fault detection and isolation scheme for discrete-time systems subject to actuator faults,in which a bank of H_/H∞ fault detection unknown input observers(UIOs) and a zonotopic threshold analysis strategy are considered. In observer design, finite-frequency H_ index based on the generalized Kalman-Yakubovich-Popov lemma and H∞ technique are utilized to evaluate worst-case fault sensitivity and disturbance attenuation performance, respectively. The proposed H_/H∞ fault detection observers are designed to be insensitive to the corresponding actuator fault only, but sensitive to others.Then, to overcome the weakness of predefining threshold for FDI decision-making, this work proposes a zonotopic threshold analysis method to evaluate the generated residuals. The FDI decision-making relies on the evaluation with a dynamical zonotopic threshold. Finally, numerical simulations are provided to show the feasibility of the proposed scheme.展开更多
In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condit...In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condition is removed. The procedure of calculating the parameter matrices of the full-order observer is also presented. Compared with the existing auxiliary outputs based sliding-mode observers, the designed observer has a simpler design procedure, which is systematic and does not involve solving linear matrix inequalities. The simulation results show that the proposed method is effective.展开更多
This paper proposes a robust fault detection and isolation (FDI) scheme for discrete time-delay system with disturbance. The FDI scheme can not only detect but also isolate the faults. The lifting method is exploited ...This paper proposes a robust fault detection and isolation (FDI) scheme for discrete time-delay system with disturbance. The FDI scheme can not only detect but also isolate the faults. The lifting method is exploited to transform the discrete time-delay system into the non-time-delay form. A generalized structured residual set is designed based on the unknown input observer (UIO). For each residual generator, one of the system input signals together with the corresponding actuator fault and the disturbance signals are treated as an unknown input term. The residual signals can not only be robust against the disturbance, but also be of the capacity to isolate the actuator faults. The proposed method has been verified by a numerical example.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those ...Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.展开更多
A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H...A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.展开更多
By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown in...By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown input fault diagnosis observer group was designed. Fault detection and isolation were realized through making ob- server residuals robust to specific faults but sensitive to other faults. Sufficient existence conditions and design of the observers were given in detail. Diagnosis observer parameters for servo-valve, cylinder, roller and body rolling mill were obtained resoectively. The effectiveness of this diagnosis method was oroved bv actual data simulations.展开更多
Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method f...Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method for MAS is developed in presence of actuator and sensor faults.Firstly,the actuator and sensor faults are extended to the system state,and the system is transformed into a descriptor system form.Then,a sliding mode-based distributed unknown input observer is proposed to estimate the extended state.Furthermore,adaptive laws are introduced to adjust the observer parameters.Finally,the effectiveness of the proposed method is demonstrated with numerical simulations.展开更多
Recently, the conditions of observers that can estimate directly Kx(t) for an arbitrarily given K, and that are free of the effect of time delayed states of the system, are formulated. This paper points out that, be...Recently, the conditions of observers that can estimate directly Kx(t) for an arbitrarily given K, and that are free of the effect of time delayed states of the system, are formulated. This paper points out that, because of the equivalence in formulation, the existing conditions for unknown input observers can be used to establish directly a new set of sufficient conditions for that recent observer. This new set of sufficient conditions is much simpler, and therefore much more useful and significant, than the sufficient conditions derived in that recent paper. This new set of sufficient conditions also reveals some basic mistakes of that recent paper. In addition, this paper reveals the severe restrictiveness of this new set of conditions and proposes a fundamentally new observer design formulation that can relax that set of conditions significantly.展开更多
A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and...A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.展开更多
Unknown input observer is one of the most famous strategies for robust fault diagnosis of linear systems, but studies on nonlinear cases are not sufficient. On the other hand, the extended Kalman filter (EKF) is wel...Unknown input observer is one of the most famous strategies for robust fault diagnosis of linear systems, but studies on nonlinear cases are not sufficient. On the other hand, the extended Kalman filter (EKF) is wellknown in nonlinear estimation, and its convergence as an observer of nonlinear deterministic system has been derived recently. By combining the EKF and the unknown input Kalman filter, we propose a robust nonlinear estimator called unknown input EKF (UIEKF) and prove its convergence as a nonlinear robust observer under some mild conditions using linear matrix inequality (LMI). Simulation of a three-tank system “DTS200”, a benchmark in process control, demonstrates the robustness and effectiveness of the UIEKF as an observer for nonlinear systems with uncertainty, and the fault diagnosis based on the UIEKF is found successful.展开更多
Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research...Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.展开更多
Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily...Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.展开更多
In this contribution, robust fault detection problems for discrete time-delay systems with l2-norm bounded unknown inputs are studied. The basic idea of our study is first to introduce a state-memoryless observer-base...In this contribution, robust fault detection problems for discrete time-delay systems with l2-norm bounded unknown inputs are studied. The basic idea of our study is first to introduce a state-memoryless observer-based fault detection filter (FDF) as the residual generator and then to formulate such a FDF design problem as an Hen optimization problem in the sense of increasing the sensitivity of residual to the faults, while simultaneously enhancing the robustness of residual to unknown input as well as plant input. The main results consist of the formulation of such a residual generation optimization problem, solvability conditions and the derivation of an analytic solution. The residual evaluation problem is also considered, which includes the determination of residual evaluation function and threshold. A numerical example is used to demonstrate the proposed fault detection scheme.展开更多
This paper first investigates the observer of a class of chaotic systems, and then discusses the synchronization between two identical Hindmarsh–Rose(HR) neuronal chaotic systems. Both the drive and response system...This paper first investigates the observer of a class of chaotic systems, and then discusses the synchronization between two identical Hindmarsh–Rose(HR) neuronal chaotic systems. Both the drive and response systems are assumed to have only one state variable available. By constructing proper observers, some novel criteria for synchronization are proposed via a scalar input. Numerical simulations are given to demonstrate the efficiency of the proposed approach.展开更多
For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The...For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
基金This project was supported by the National Natural Science Foundation of China(60374024)
文摘A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.
基金partially supported by National Key R&D Program of China(2018YFB1304600)National Natural Science Foundation of China(51805021,U1813220)+1 种基金China Postdoctoral Science Foundation Grant(2018M631311)the Fundamental Research Funds for the Central Universities(XK1802-4)
文摘This work proposes a robust fault detection and isolation scheme for discrete-time systems subject to actuator faults,in which a bank of H_/H∞ fault detection unknown input observers(UIOs) and a zonotopic threshold analysis strategy are considered. In observer design, finite-frequency H_ index based on the generalized Kalman-Yakubovich-Popov lemma and H∞ technique are utilized to evaluate worst-case fault sensitivity and disturbance attenuation performance, respectively. The proposed H_/H∞ fault detection observers are designed to be insensitive to the corresponding actuator fault only, but sensitive to others.Then, to overcome the weakness of predefining threshold for FDI decision-making, this work proposes a zonotopic threshold analysis method to evaluate the generated residuals. The FDI decision-making relies on the evaluation with a dynamical zonotopic threshold. Finally, numerical simulations are provided to show the feasibility of the proposed scheme.
基金Supported by the National Natural Science Foundation of China(No.61203299)
文摘In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condition is removed. The procedure of calculating the parameter matrices of the full-order observer is also presented. Compared with the existing auxiliary outputs based sliding-mode observers, the designed observer has a simpler design procedure, which is systematic and does not involve solving linear matrix inequalities. The simulation results show that the proposed method is effective.
基金Supported by National Natural Science Foundation of China (No.60574081)
文摘This paper proposes a robust fault detection and isolation (FDI) scheme for discrete time-delay system with disturbance. The FDI scheme can not only detect but also isolate the faults. The lifting method is exploited to transform the discrete time-delay system into the non-time-delay form. A generalized structured residual set is designed based on the unknown input observer (UIO). For each residual generator, one of the system input signals together with the corresponding actuator fault and the disturbance signals are treated as an unknown input term. The residual signals can not only be robust against the disturbance, but also be of the capacity to isolate the actuator faults. The proposed method has been verified by a numerical example.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
基金This work was supported in part by the JSPS(Japan Society for the Promotion of Science)KAKENHI(20H04566,22H03998)the National Natural Science Foundation of China(61873348)+1 种基金the Natural Science Foundation of Hubei Province,China(2020CFA031)Wuhan Applied Foundational Frontier Project(2020010601012175).
文摘Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.
基金This project was supported by the Chinese National Natural Science Foundation under Grant (10372015).
文摘A simple parametric approach to design a full-order observer for matrix second-order linear systems with uncertain disturbance input in the matrixsecond-order framework is proposed. The basic idea is to minimize the H2 norm of the transfer function from disturbance to estimation error using the design degrees of freedom provided by a parametric approach in the observer design. Besides the design parameters, the eigenvalues of the closed-loop system are also optimized within desired regions on the left-half of the complex plane. Using the proposed approach, additional specifications can be easily achieved. A spring-mass system is using to show the effect of the proposed approaches.
文摘By building mathematical model for HAGC (hydraulic automation gauge control) system of strip rolling mill, treating faults as unknown inputs induced by model uncertainty, and analyzing fault direction, an unknown input fault diagnosis observer group was designed. Fault detection and isolation were realized through making ob- server residuals robust to specific faults but sensitive to other faults. Sufficient existence conditions and design of the observers were given in detail. Diagnosis observer parameters for servo-valve, cylinder, roller and body rolling mill were obtained resoectively. The effectiveness of this diagnosis method was oroved bv actual data simulations.
基金supported by the National Natural Science Foundation of China(62020106003,62003162)111 project(B20007)+1 种基金the Natural Science Foundation of Jiangsu Province of China(BK20200416)the China Postdoctoral Science Foundation(2020TQ0151,2020M681590).
文摘Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method for MAS is developed in presence of actuator and sensor faults.Firstly,the actuator and sensor faults are extended to the system state,and the system is transformed into a descriptor system form.Then,a sliding mode-based distributed unknown input observer is proposed to estimate the extended state.Furthermore,adaptive laws are introduced to adjust the observer parameters.Finally,the effectiveness of the proposed method is demonstrated with numerical simulations.
文摘Recently, the conditions of observers that can estimate directly Kx(t) for an arbitrarily given K, and that are free of the effect of time delayed states of the system, are formulated. This paper points out that, because of the equivalence in formulation, the existing conditions for unknown input observers can be used to establish directly a new set of sufficient conditions for that recent observer. This new set of sufficient conditions is much simpler, and therefore much more useful and significant, than the sufficient conditions derived in that recent paper. This new set of sufficient conditions also reveals some basic mistakes of that recent paper. In addition, this paper reveals the severe restrictiveness of this new set of conditions and proposes a fundamentally new observer design formulation that can relax that set of conditions significantly.
文摘A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.
基金Supported by the National Natural Science Foundation of China (No. 60234010, 60574084)the Field Bus Technology & Automation Key Lab of Beijing at North China and the National 973 Program of China (No. 2002CB312200).
文摘Unknown input observer is one of the most famous strategies for robust fault diagnosis of linear systems, but studies on nonlinear cases are not sufficient. On the other hand, the extended Kalman filter (EKF) is wellknown in nonlinear estimation, and its convergence as an observer of nonlinear deterministic system has been derived recently. By combining the EKF and the unknown input Kalman filter, we propose a robust nonlinear estimator called unknown input EKF (UIEKF) and prove its convergence as a nonlinear robust observer under some mild conditions using linear matrix inequality (LMI). Simulation of a three-tank system “DTS200”, a benchmark in process control, demonstrates the robustness and effectiveness of the UIEKF as an observer for nonlinear systems with uncertainty, and the fault diagnosis based on the UIEKF is found successful.
基金This work was supported by the National Natural Science Foundation of China(61803379)the China Postdoctoral Science Foundation(2017M613370,2018T111129).
文摘Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
文摘Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.
基金This project was supported by the Shandong Natural Science Foundation (Y2002G05 Y2001G01).
文摘In this contribution, robust fault detection problems for discrete time-delay systems with l2-norm bounded unknown inputs are studied. The basic idea of our study is first to introduce a state-memoryless observer-based fault detection filter (FDF) as the residual generator and then to formulate such a FDF design problem as an Hen optimization problem in the sense of increasing the sensitivity of residual to the faults, while simultaneously enhancing the robustness of residual to unknown input as well as plant input. The main results consist of the formulation of such a residual generation optimization problem, solvability conditions and the derivation of an analytic solution. The residual evaluation problem is also considered, which includes the determination of residual evaluation function and threshold. A numerical example is used to demonstrate the proposed fault detection scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.11361043 and 61304161)the Natural Science Foundation of Jiangxi Province,China(Grant No.20122BAB201005)the Scientific and Technological Project Foundation of Jiangxi Province Education Office,China(Grant No.GJJ14156)
文摘This paper first investigates the observer of a class of chaotic systems, and then discusses the synchronization between two identical Hindmarsh–Rose(HR) neuronal chaotic systems. Both the drive and response systems are assumed to have only one state variable available. By constructing proper observers, some novel criteria for synchronization are proposed via a scalar input. Numerical simulations are given to demonstrate the efficiency of the proposed approach.
文摘For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.