Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exp...Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.展开更多
[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest...[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest surface fuel load.This experimental area was located in Gaoming District,Foshan City,Guangdong Province.The average surface fuel load of the experimental area was as high as 39.33 t/ha,and the forest surface fuel load of Pinus elliottii was the highest.[Results]The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI)had a moderately strong correlation with the forest surface fuel load.The regression model of NDVI(X)and forest surface fuel load(Y)was established:Y=-5.9354X+8.4663,and the regression model of EVI(X)and forest surface fuel load(Y)was established:Y=-5.8485X+6.7271.The study also found that the linear relationship between NDVI and surface fuel load was more significant.[Conclusions]Both NDVI and EVI have moderately strong correlations with forest surface fuel load.NDVI is moderately or strongly correlated with the surface fuel load of Pinus massoniana forest,shrub grassland,broad-leaf forest and bamboo forest,while EVI is only strongly correlated with surface fuel load of broad-leaf forest and bamboo forest.It is expected that the relationship between other vegetation indices and forest surface fuel load can be obtained by the method in this study,so as to find a more universal vegetation index for calculating surface fuel load.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from a...At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.展开更多
针对无人机和遥感测绘(unmanned air vehicle for remote sensing,UAV-RS)相关专业在实际教学中存在的问题,如设备资源和实验时间无法满足学生需求,野外作业中无人机的安全难以管控,天气和环境条件要求苛刻等,以无人机遥感测绘外业为仿...针对无人机和遥感测绘(unmanned air vehicle for remote sensing,UAV-RS)相关专业在实际教学中存在的问题,如设备资源和实验时间无法满足学生需求,野外作业中无人机的安全难以管控,天气和环境条件要求苛刻等,以无人机遥感测绘外业为仿真对象,设计开发了虚拟仿真系统,改革实训教学模式。仿真系统确立了无人机飞行操控、地面场景模拟和遥感图像获取3个模块,引导学生自主完成无人机遥感测绘外业过程。评估实验中经过仿真系统学习的学生(实验组)的项目完成率为:初级90%、中级80%、高级75%,均明显高于对照组。表明基于仿真系统的教学模式可提升UAV-RS的外业教学效果,提高复杂项目完成率,并能够激发学生自主学习的积极性。展开更多
Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environment...Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environmental impacts and climate change.UAVs have achieved significant attention as a remote sensing environment,which captures high-resolution images from different scenes such as land,forest fire,flooding threats,road collision,landslides,and so on to enhance data analysis and decision making.Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs.This paper proposes a new multi-modal fusion based earth data classification(MMF-EDC)model.The MMF-EDC technique aims to identify the patterns that exist in the earth data and classifies them into appropriate class labels.The MMF-EDC technique involves a fusion of histogram of gradients(HOG),local binary patterns(LBP),and residual network(ResNet)models.This fusion process integrates many feature vectors and an entropy based fusion process is carried out to enhance the classification performance.In addition,the quantum artificial flora optimization(QAFO)algorithm is applied as a hyperparameter optimization technique.The AFO algorithm is inspired by the reproduction and the migration of flora helps to decide the optimal parameters of the ResNet model namely learning rate,number of hidden layers,and their number of neurons.Besides,Variational Autoencoder(VAE)based classification model is applied to assign appropriate class labels for a useful set of feature vectors.The proposedMMF-EDCmodel has been tested using UCM and WHU-RS datasets.The proposed MMFEDC model attains exhibits promising classification results on the applied remote sensing images with the accuracy of 0.989 and 0.994 on the test UCM and WHU-RS dataset respectively.展开更多
In order to solve the problems of insufficient training equipment,relatively lack of curriculum resources and single teaching means in the teaching of UAV(unmanned aerial vehicle)applied technology major,this paper st...In order to solve the problems of insufficient training equipment,relatively lack of curriculum resources and single teaching means in the teaching of UAV(unmanned aerial vehicle)applied technology major,this paper studies the application of MR(Mixed Reality)in UAV applied technology major teaching,with the teaching of UAV agriculture&forestry plant protection curriculum as the carrier.The study will solve the pain points in teaching,improve the teaching ability and teaching information level,and increase the talent training quality of UAV,agriculture&forestry plant protection and related majors.Furthermore,it will create a protective,interactive,remote and scalable teaching experience for stu-dents,which can improve the teaching effect and reduce the teaching cost.展开更多
Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the ...Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the miniaturization of sensors.UAVs are surpassing satellites and aircraft in remote sensing data supply for many local requirements.In comparison with satellite remote sensing data,most UAV remote sensing data is characterized by high resolution,small coverage area,and heterogeneous multi-sources.However,UAVs lack a unified space–time framework and standardized data process.This paper describes a UAV remote sensing data carrier that can be used as an e-commerce platform for data sharing among registered members and a mission planner for new data acquisition.To the best of our knowledge,the data carriers described herein,are the first of their kind.Through seamless docking with UAVs,the data carrier will form a national UAV network,capable of dynamically obtaining very-high-resolution UAV remote sensing images.In practice,a pilot retrieval system of UAV meta data has been developed to provide a catalogue of data product services.展开更多
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金supported in part by the Strategic Research Council at the Academy of Finland project“Competence Based Growth Through Integrated Disruptive Technologies of 3D Digitalization,Robotics,Geospatial Information and Image Processing/Computing-Point Cloud Ecosystem(293389,314312),Academy of Finland projects“Estimating Forest Resources and Quality-related Attributes Using Automated Methods and Technologies”(334830,334829)”,“Monitoring and understanding forest ecosystem cycles”(334060)。
文摘Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.
基金Forestry Science and Technology Innovation Project of Guangdong Province(2018KJCX003).
文摘[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest surface fuel load.This experimental area was located in Gaoming District,Foshan City,Guangdong Province.The average surface fuel load of the experimental area was as high as 39.33 t/ha,and the forest surface fuel load of Pinus elliottii was the highest.[Results]The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI)had a moderately strong correlation with the forest surface fuel load.The regression model of NDVI(X)and forest surface fuel load(Y)was established:Y=-5.9354X+8.4663,and the regression model of EVI(X)and forest surface fuel load(Y)was established:Y=-5.8485X+6.7271.The study also found that the linear relationship between NDVI and surface fuel load was more significant.[Conclusions]Both NDVI and EVI have moderately strong correlations with forest surface fuel load.NDVI is moderately or strongly correlated with the surface fuel load of Pinus massoniana forest,shrub grassland,broad-leaf forest and bamboo forest,while EVI is only strongly correlated with surface fuel load of broad-leaf forest and bamboo forest.It is expected that the relationship between other vegetation indices and forest surface fuel load can be obtained by the method in this study,so as to find a more universal vegetation index for calculating surface fuel load.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.
基金funded by the National Key Technologies R&D Program of China (Grants No. 2017YFC0505104)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying, Mapping and Geoinformation of China (Grants No. DM2016SC09)
文摘At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.
文摘针对无人机和遥感测绘(unmanned air vehicle for remote sensing,UAV-RS)相关专业在实际教学中存在的问题,如设备资源和实验时间无法满足学生需求,野外作业中无人机的安全难以管控,天气和环境条件要求苛刻等,以无人机遥感测绘外业为仿真对象,设计开发了虚拟仿真系统,改革实训教学模式。仿真系统确立了无人机飞行操控、地面场景模拟和遥感图像获取3个模块,引导学生自主完成无人机遥感测绘外业过程。评估实验中经过仿真系统学习的学生(实验组)的项目完成率为:初级90%、中级80%、高级75%,均明显高于对照组。表明基于仿真系统的教学模式可提升UAV-RS的外业教学效果,提高复杂项目完成率,并能够激发学生自主学习的积极性。
基金The authors would like to thank the Taif University for funding this work through Taif University Research Supporting,Project Number.(TURSP-2020/277),Taif University,Taif,Saudi Arabia.
文摘Latest advancements in the integration of camera sensors paves a way for newUnmannedAerialVehicles(UAVs)applications such as analyzing geographical(spatial)variations of earth science in mitigating harmful environmental impacts and climate change.UAVs have achieved significant attention as a remote sensing environment,which captures high-resolution images from different scenes such as land,forest fire,flooding threats,road collision,landslides,and so on to enhance data analysis and decision making.Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs.This paper proposes a new multi-modal fusion based earth data classification(MMF-EDC)model.The MMF-EDC technique aims to identify the patterns that exist in the earth data and classifies them into appropriate class labels.The MMF-EDC technique involves a fusion of histogram of gradients(HOG),local binary patterns(LBP),and residual network(ResNet)models.This fusion process integrates many feature vectors and an entropy based fusion process is carried out to enhance the classification performance.In addition,the quantum artificial flora optimization(QAFO)algorithm is applied as a hyperparameter optimization technique.The AFO algorithm is inspired by the reproduction and the migration of flora helps to decide the optimal parameters of the ResNet model namely learning rate,number of hidden layers,and their number of neurons.Besides,Variational Autoencoder(VAE)based classification model is applied to assign appropriate class labels for a useful set of feature vectors.The proposedMMF-EDCmodel has been tested using UCM and WHU-RS datasets.The proposed MMFEDC model attains exhibits promising classification results on the applied remote sensing images with the accuracy of 0.989 and 0.994 on the test UCM and WHU-RS dataset respectively.
基金Supported by Vocational Education Reform and Innovation Project of Ministry of Education(HBKC217166,HBKC217168)Teaching Reform Project of Agricultural Specialty Teaching Steering Committee of Higher Vocational Education in Guangdong Province(YNYJZW2019YB09)+1 种基金Special Higher Vocational Enrollment Expansion Project of Teaching Reform Research and Practice Pro-ject in Guangdong Province(JGGZKZ2020141)Special Fund for Rural Revitalization Strategy of Huizhou in 2021(2021SC010502002)
文摘In order to solve the problems of insufficient training equipment,relatively lack of curriculum resources and single teaching means in the teaching of UAV(unmanned aerial vehicle)applied technology major,this paper studies the application of MR(Mixed Reality)in UAV applied technology major teaching,with the teaching of UAV agriculture&forestry plant protection curriculum as the carrier.The study will solve the pain points in teaching,improve the teaching ability and teaching information level,and increase the talent training quality of UAV,agriculture&forestry plant protection and related majors.Furthermore,it will create a protective,interactive,remote and scalable teaching experience for stu-dents,which can improve the teaching effect and reduce the teaching cost.
基金Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA19050501)the National Natural Science Foundation of China(grant number 41771388,41971359)。
文摘Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the miniaturization of sensors.UAVs are surpassing satellites and aircraft in remote sensing data supply for many local requirements.In comparison with satellite remote sensing data,most UAV remote sensing data is characterized by high resolution,small coverage area,and heterogeneous multi-sources.However,UAVs lack a unified space–time framework and standardized data process.This paper describes a UAV remote sensing data carrier that can be used as an e-commerce platform for data sharing among registered members and a mission planner for new data acquisition.To the best of our knowledge,the data carriers described herein,are the first of their kind.Through seamless docking with UAVs,the data carrier will form a national UAV network,capable of dynamically obtaining very-high-resolution UAV remote sensing images.In practice,a pilot retrieval system of UAV meta data has been developed to provide a catalogue of data product services.
基金This work was supported by the National Defense Outstanding Youth Science Foundation(No.2018-JCJQ-ZQ-053)the National Natural Science Foundation of China(No.52275114)+1 种基金the China Postdoctoral Science Foundation Funded Project(No.2019M651827)the Priority Academic Program Development of Jiangsu Higher Education Institutions.