期刊文献+
共找到1,015篇文章
< 1 2 51 >
每页显示 20 50 100
Three-dimensional multi-constraint route planning of unmanned aerial vehicle low-altitude penetration based on coevolutionary multi-agent genetic algorithm 被引量:8
1
作者 彭志红 吴金平 陈杰 《Journal of Central South University》 SCIE EI CAS 2011年第5期1502-1508,共7页
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir... To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast. 展开更多
关键词 unmanned aerial vehicle (UAV) low-altitude penetration three-dimensional (3D) route planning coevolutionary multiagent genetic algorithm (CE-MAGA)
下载PDF
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization 被引量:24
2
作者 XU Zhen ZHANG Enze CHEN Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期130-141,共12页
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le... This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths. 展开更多
关键词 unmanned aerial vehicle(UAV) path planning multiobjective optimization particle swarm optimization
下载PDF
3D Path Optimisation of Unmanned Aerial Vehicles Using Q Learning-Controlled GWO-AOA
3
作者 K.Sreelakshmy Himanshu Gupta +3 位作者 Om Prakash Verma Kapil Kumar Abdelhamied A.Ateya Naglaa F.Soliman 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2483-2503,共21页
Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedi... Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedious tasks in hazardous environments.Their increased demand created the requirement for enabling the UAVs to traverse independently through the Three Dimensional(3D)flight environment consisting of various obstacles which have been efficiently addressed by metaheuristics in past literature.However,not a single optimization algorithms can solve all kind of optimization problem effectively.Therefore,there is dire need to integrate metaheuristic for general acceptability.To address this issue,in this paper,a novel reinforcement learning controlled Grey Wolf Optimisation-Archimedes Optimisation Algorithm(QGA)has been exhaustively introduced and exhaustively validated firstly on 22 benchmark functions and then,utilized to obtain the optimum flyable path without collision for UAVs in three dimensional environment.The performance of the developed QGA has been compared against the various metaheuristics.The simulation experimental results reveal that the QGA algorithm acquire a feasible and effective flyable path more efficiently in complicated environment. 展开更多
关键词 Archimedes optimisation algorithm grey wolf optimisation path planning reinforcement learning unmanned aerial vehicles
下载PDF
Path planning for unmanned aerial vehicles in surveillance tasks under wind fields 被引量:1
4
作者 张兴 陈杰 辛斌 《Journal of Central South University》 SCIE EI CAS 2014年第8期3079-3091,共13页
The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins ... The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem. 展开更多
关键词 unmanned aerial vehicle path planning in wind field Dubins traveling salesman problem terminal heading relaxation differential evolution
下载PDF
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment
5
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
下载PDF
Contour Based Path Planning with B-Spline Trajectory Generation for Unmanned Aerial Vehicles (UAVs) over Hostile Terrain
6
作者 Ee-May Kan Meng-Hiot Lim +2 位作者 Swee-Ping Yeo Jiun-Sien Ho Zhenhai Shao 《Journal of Intelligent Learning Systems and Applications》 2011年第3期122-130,共9页
This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to est... This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms. 展开更多
关键词 unmanned aerial vehicles (UAVs) Radar path planning B-SPLINES
下载PDF
Path Planning Method Based on D^(*) lite Algorithm for Unmanned Surface Vehicles in Complex Environments 被引量:9
7
作者 YAO Yan-long LIANG Xiao-feng +4 位作者 LI Ming-zhi YU Kai CHEN Zhe NI Chong-ben TENG Yue 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期372-383,共12页
In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs a... In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments. 展开更多
关键词 path planning unmanned surface vehicle D^(*)lite algorithm complex environment
下载PDF
Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles 被引量:8
8
作者 Thanapong Phanthong Toshihiro Maki +2 位作者 Tamaki Ura Takashi Sakamaki Pattara Aiyarak 《Journal of Marine Science and Application》 2014年第1期105-116,共12页
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment... This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV. 展开更多
关键词 UNDERWATER OBSTACLE AVOIDANCE real-time pathre-planning A* ALGORITHM SONAR image unmanned surface vehicle
下载PDF
An Air Route Planning Model of Unmanned Aerial Vehicles Under Constraints of Ground Safety 被引量:2
9
作者 HAN Peng ZHAO Yifei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期298-305,共8页
With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope... With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time. 展开更多
关键词 air transportation unmanned aerial vehicle(UAV) air route planning safety cost ground risk assessment improved ant colony algorithm
下载PDF
Real-time UAV path planning based on LSTM network
10
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(LSTM)
下载PDF
Distributed collaborative complete coverage path planning based on hybrid strategy
11
作者 ZHANG Jia DU Xin +1 位作者 DONG Qichen XIN Bin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期463-472,共10页
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ... Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably. 展开更多
关键词 multi-agent cooperation unmanned aerial vehicles(UAV) distributed algorithm complete coverage path planning(CCPP)
下载PDF
Multi-UAVs Collaborative Path Planning in the Cramped Environment
12
作者 Siyuan Feng Linzhi Zeng +2 位作者 Jining Liu Yi Yang Wenjie Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期529-538,共10页
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe... Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner. 展开更多
关键词 Collision avoidance conflict resolution multi-unmanned aerial vehicles(UAVs)system path planning
下载PDF
Dubins Waypoint Navigation of Small-Class Unmanned Aerial Vehicles
13
作者 Larry M. Silverberg Dahan Xu 《Open Journal of Optimization》 2019年第2期59-72,共14页
This paper considers a variation on the Dubins path problem and proposes an improved waypoint navigation (WN) algorithm called Dubins waypoint navigation (DWN). Based on the Dubins path problem, an algorithm is develo... This paper considers a variation on the Dubins path problem and proposes an improved waypoint navigation (WN) algorithm called Dubins waypoint navigation (DWN). Based on the Dubins path problem, an algorithm is developed that is updated in real-time with a horizon of three waypoints. The purpose of DWN is to overcome a problem that we find in existing WN for small-class fixed-wing unmanned aerial vehicles (UAV) of not accurately reaching waypoints. This problem results at times in high overshoot and, in the presence of wind disturbances, it can cause a vehicle to miss the waypoint and swirl around it. To prevent this, the DWN creates “new waypoints” that are in the background, called turning points. Examples illustrate the improvement of the performance of WN achieved using the DWN algorithm in terms of the targeting of waypoints while reducing fuel and time. 展开更多
关键词 Dubins path WAYPOINT NAVIGATION unmanned aerial vehicleS AUTONOMY Shortest path Fuel Optimization
下载PDF
3D modeling of Unmanned Aerial Vehicles Tilt Photogrammetry
14
作者 Lingyun Li 《Journal of World Architecture》 2020年第4期10-12,共3页
Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especiall... Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment. 展开更多
关键词 unmanned aerial vehicle(UAV) Tilt photogrammetry three-dimensional modeling Multiview image dense matching Smart3D
下载PDF
Multi-UAV Collaborative Mission Planning Method for Self-Organized Sensor Data Acquisition
15
作者 Shijie Yang Jiateng Yuan +3 位作者 Zhipeng Zhang Zhibo Chen Hanchao Zhang Xiaohui Cui 《Computers, Materials & Continua》 SCIE EI 2024年第10期1529-1563,共35页
In recent years,sensor technology has been widely used in the defense and control of sensitive areas in cities,or in various scenarios such as early warning of forest fires,monitoring of forest pests and diseases,and ... In recent years,sensor technology has been widely used in the defense and control of sensitive areas in cities,or in various scenarios such as early warning of forest fires,monitoring of forest pests and diseases,and protection of endangered animals.Deploying sensors to collect data and then utilizing unmanned aerial vehicle(UAV)to collect the data stored in the sensors has replaced traditional manual data collection as the dominant method.The current strategies for efficient data collection in above scenarios are still imperfect,and the low quality of the collected data and the excessive energy consumed by UAV flights are still the main problems faced in data collection.With regards this,this paper proposes a multi-UAV mission planning method for self-organized sensor data acquisition by comprehensively utilizing the techniques of self-organized sensor clustering,multi-UAV mission area allocation,and sub-area data acquisition scheme optimization.The improvedα-hop clustering method utilizes the average transmission distance to reduce the size of the collection sensors,and the K-Dimensional method is used to form a multi-UAV cooperative workspace,and then,the genetic algorithm is used to trade-off the speed with the age of information(AoI)of the collected information and the energy consumption to form the multi-UAV data collection operation scheme.The combined optimization scheme in paper improves the performance by 95.56%and 58.21%,respectively,compared to the traditional baseline model.In order to verify the excellent generalization and applicability of the proposed method in real scenarios,the simulation test is conducted by introducing the digital elevation model data of the real terrain,and the results show that the relative error values of the proposed method and the performance test of the actual flight of the UAV are within the error interval of±10%.Then,the advantages and disadvantages of the present method with the existing mainstream schemes are tested,and the results show that the present method has a huge advantage in terms of space and time complexity,and at the same time,the accuracy for data extraction is relatively improved by 10.46%and 12.71%.Finally,by eliminating the clustering process and the subtask assignment process,the AoI performance decreases by 3.46×and 4.45×,and the energy performance decreases by 3.52×and 4.47×.This paper presents a comprehensive and detailed proactive optimization of the existing challenges faced in the field of data acquisition by means of a series of combinatorial optimizations. 展开更多
关键词 unmanned aerial vehicle sensor self-organization path planning multi-UAV task assignment
下载PDF
Improved lazy theta algorithm based on octree map for path planning of UAV
16
作者 Meng-shun Yuan Tong-le Zhou Mou Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期8-18,共11页
This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By us... This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight. 展开更多
关键词 unmanned aerial vehicle path planning Lazy theta*algorithm Octree map Line-of-sight algorithm
下载PDF
Trajectory Planning for OTFS-Based UAV Communications 被引量:1
17
作者 Rui Han Jiahao Ma Lin Bai 《China Communications》 SCIE CSCD 2023年第1期114-124,共11页
Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is c... Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is crucial to investigate robust airto-ground(A2G)wireless links for high-speed UAVs.However,the A2G wireless link is unstable as it suffers from large path-loss and severe Doppler effect due to the high mobility of UAVs.In order to meet these challenges,we propose an orthogonal time frequency space(OTFS)-based UAV communication system to relief the Doppler effect.Besides,considering that the energy of UAV is limited,we optimize the trajectory planning of UAV to minimize the energy consumption under the constraints of bit error rate(BER)and transmission rate,where the Doppler compensation is taken into account.Simulation results show that the performance of OTFS-based UAV system is superior to orthogonal frequency division multiplexing(OFDM)-based UAV systems,which can accomplish transmission tasks over shorter distances with lower energy consumption. 展开更多
关键词 orthogonal time frequency space(OTFS) orthogonal frequency division multiplexing(OFDM) unmanned aerial vehicle(UAV) 6G trajectory planning
下载PDF
Path planning of unmanned aerial vehicle based on improved gravitational search algorithm 被引量:20
18
作者 LI Pei DUAN HaiBin 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第10期2712-2719,共8页
Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Searc... Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Search Algorithm(GSA) is a newly presented under the inspiration of the Newtonian gravity,and it is easy to fall local best.On the basis of introducing the idea of memory and social information of Particle Swarm Optimization(PSO),a novel moving strategy in the searching space was designed,which can improve the quality of the optimal solution.Subsequently,a weighted value was assigned to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search.Particle position was updated according to the selection rules of survival of the fittest.In this way,the population is always moving in the direction of the optimal solution.The feasibility and effectiveness of our improved GSA approach was verified by comparative experimental results with PSO,basic GSA and two other GSA models. 展开更多
关键词 uninhabited aerial vehicle path planning gravitational search algorithm social information weighted value selection rules
原文传递
Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval 被引量:7
19
作者 Liu Wei Zheng Zheng Cai Kaiyuan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期646-660,共15页
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory cap... This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances. 展开更多
关键词 ADAPTIVE Bi-level programming Motion planning unmanned aerial vehicles Variable time interval
原文传递
A review of cooperative path planning of an unmanned aerial vehicle group 被引量:12
20
作者 Hao ZHANG Bin XIN +2 位作者 Li-hua DOU Jie CHEN Kaoru HIROTA 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第12期1671-1694,共24页
As a cutting-edge branch of unmanned aerial vehicle(UAV)technology,the cooperation of a group of UAVs has attracted increasing attention from both civil and military sectors,due to its remarkable merits in functionali... As a cutting-edge branch of unmanned aerial vehicle(UAV)technology,the cooperation of a group of UAVs has attracted increasing attention from both civil and military sectors,due to its remarkable merits in functionality and flexibility for accomplishing complex extensive tasks,e.g.,search and rescue,fire-fighting,reconnaissance,and surveillance.Cooperative path planning(CPP)is a key problem for a UAV group in executing tasks collectively.In this paper,an attempt is made to perform a comprehensive review of the research on CPP for UAV groups.First,a generalized optimization framework of CPP problems is proposed from the viewpoint of three key elements,i.e.,task,UAV group,and environment,as a basis for a comprehensive classification of different types of CPP problems.By following the proposed framework,a taxonomy for the classification of existing CPP problems is proposed to describe different kinds of CPPs in a unified way.Then,a review and a statistical analysis are presented based on the taxonomy,emphasizing the coordinative elements in the existing CPP research.In addition,a collection of challenging CPP problems are provided to highlight future research directions. 展开更多
关键词 unmanned aerial vehicle group COOPERATION path planning Optimization problem
原文传递
上一页 1 2 51 下一页 到第
使用帮助 返回顶部