This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ...This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.展开更多
In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. ...In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. Accordingly,the low probability of intercept(LPI) performance of system can be improved by collaboratively optimizing transmit power and waveform. For target radar cross section(RCS) prediction, we design a random RCS prediction model based on electromagnetic simulation(ES) of target. For waveform selection, we build a waveform library to adaptively manage the frequency modulation slope and pulse width of radar waveform. For power allocation,the CCP is employed to balance tracking accuracy and power resource. The Bayesian Cramér-Rao lower bound(BCRLB) is adopted as a criterion to measure target tracking accuracy. The hybrid intelli gent algorithms, in which the stochastic simulation is integrated into the genetic algorithm(GA), are used to solve the stochastic optimization problem. Simulation results demonstrate that the proposed JWSPA strategy can save more transmit power than the traditional fixed waveform scheme under the same target tracking accuracy.展开更多
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper...The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.展开更多
This paper presents the recent developments in Fault-Tolerant Cooperative Control(FTCC)of multiple unmanned aerial vehicles(multi-UAVs).To facilitate the analyses of FTCC methods for multi-UAVs.the formation control s...This paper presents the recent developments in Fault-Tolerant Cooperative Control(FTCC)of multiple unmanned aerial vehicles(multi-UAVs).To facilitate the analyses of FTCC methods for multi-UAVs.the formation control strategies under fault-free flight conditions of multi-UAVs are first summarized and analyzed,including the leader-following,behavior-based,virtual structure,collision avoidance,algebraic graph-based,and close formation control methods,which are viewed as the cooperative control methods for multi-UAVs at the pre-fault stage.Then,by considering the various faults encountered by the multi-UAVs,the state-of-the-art developments on individual,leader-following,and distributed FTCC schemes for multi-UAVs are reviewed in detail.Finally,conclusions and challenging issues towards future developments are presented.展开更多
As a cutting-edge branch of unmanned aerial vehicle(UAV)technology,the cooperation of a group of UAVs has attracted increasing attention from both civil and military sectors,due to its remarkable merits in functionali...As a cutting-edge branch of unmanned aerial vehicle(UAV)technology,the cooperation of a group of UAVs has attracted increasing attention from both civil and military sectors,due to its remarkable merits in functionality and flexibility for accomplishing complex extensive tasks,e.g.,search and rescue,fire-fighting,reconnaissance,and surveillance.Cooperative path planning(CPP)is a key problem for a UAV group in executing tasks collectively.In this paper,an attempt is made to perform a comprehensive review of the research on CPP for UAV groups.First,a generalized optimization framework of CPP problems is proposed from the viewpoint of three key elements,i.e.,task,UAV group,and environment,as a basis for a comprehensive classification of different types of CPP problems.By following the proposed framework,a taxonomy for the classification of existing CPP problems is proposed to describe different kinds of CPPs in a unified way.Then,a review and a statistical analysis are presented based on the taxonomy,emphasizing the coordinative elements in the existing CPP research.In addition,a collection of challenging CPP problems are provided to highlight future research directions.展开更多
As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aeri...As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aerial vehicles (UAVs) that are car- rying out a sensing task, this paper presents a Markov decision evolutionary game (MDEG) based learning algorithm. Each in- dividual in the algorithm follows a Markov decision strategy to maximize its payoff against the well known Tit-for-Tat strate- gy. Simulation results demonstrate that the MDEG theory based approach effectively improves the collective payoff of the roam. The proposed algorithm can not only obtain the best action sequence but also a sub-optimal Markov policy that is inde- pendent of the game duration. Furthermore, the paper also studies the emergence of cooperation in the evolution of self-regarded UAVs. The results show that it is the adaptive ability of the MDEG based approach as well as the perfect balance between revenge and forgiveness of the Tit-for-Tat strategy that the emergence of cooperation should be attributed to.展开更多
Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the n...Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.展开更多
Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role i...Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role in unmanned combat system,which has to ensure the attack by unmanned surface vehicles(USVs)from failure.To meet the challenge,we propose a task allocation algorithm called distributed auction mechanism task allocation with grey wolf optimization(DAGWO).The traditional grey wolf optimization(GWO)algorithm is improved with a distributed auction mechanism(DAM)to constrain the initialization of wolves,which improves the optimization process according to the actual situation.In addition,one unmanned aerial vehicle(UAV)is employed as the central control system to establish task allocation model and construct fitness function for the multiple constraints of USV attack problem.The proposed DAGWO algorithm can not only ensure the diversity of wolves,but also avoid the local optimum problem.Simulation results show that the proposed DAGWO algorithm can effectively solve the problem of attack task allocation among multiple USVs.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to...Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm.展开更多
Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and h...Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.展开更多
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human f...Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.展开更多
Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propo...Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy.展开更多
Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction...Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.展开更多
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed...An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.展开更多
In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we disc...In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we discuss how to design the encoded sign and propose a robust decoding algorithm based on contour.Secondly,the Adaboost algorithm is used to train a classifier which can detect the encoded sign from image.Lastly,the position of UAV can be calculated by using the projective relation between the object points and their corresponding image points.Experiment includes two parts.First,simulated video data is used to verify the feasibility of the proposed method,and the results show that the average absolute error in each direction is below 0.02 m.Second,a video,acquired from an actual UAV flight,is used to calculate the position of UAV.The results show that the calculated trajectory is consistent with the actual flight path.The method runs at a speed of 0.153 sper frame.展开更多
This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius c...This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius circle to scout a certain destination.As defenders,the UAVs are arranged into three layers:the forward layer,the midfield layer and the back layer.The co-defense mechanism,including the role derivation method of UAV swarm and a guidance law based on the co-defense front point,is introduced for UAV swarm to co-detect the intruder.Besides,five formations are designed for comparative analysis when ten UAVs are applied.Through Monte Carlo experiments and ablation experiment,the effectiveness of the proposed co-defense method has been verified.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the Project Number (IF-PSAU-2021/01/18707).
文摘This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.
基金This work was supported by the National Natural Science Foundation of China(62071440,61671241).
文摘In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. Accordingly,the low probability of intercept(LPI) performance of system can be improved by collaboratively optimizing transmit power and waveform. For target radar cross section(RCS) prediction, we design a random RCS prediction model based on electromagnetic simulation(ES) of target. For waveform selection, we build a waveform library to adaptively manage the frequency modulation slope and pulse width of radar waveform. For power allocation,the CCP is employed to balance tracking accuracy and power resource. The Bayesian Cramér-Rao lower bound(BCRLB) is adopted as a criterion to measure target tracking accuracy. The hybrid intelli gent algorithms, in which the stochastic simulation is integrated into the genetic algorithm(GA), are used to solve the stochastic optimization problem. Simulation results demonstrate that the proposed JWSPA strategy can save more transmit power than the traditional fixed waveform scheme under the same target tracking accuracy.
文摘The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.
基金supported in part by National Natural Science Foundation of China(Nos.61833013,62003162,62020106003,61873055)Natural Science Foundation of Jiangsu Province of China(No.BK20200416)+4 种基金China Postdoctoral Science Foundation(Nos.2020TQ0151,2020M681590)State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang,China(No.2019-KF-23-05)111 ProjectChina(No.B20007)Natural Sciences and Engineering Research Council of Canada.
文摘This paper presents the recent developments in Fault-Tolerant Cooperative Control(FTCC)of multiple unmanned aerial vehicles(multi-UAVs).To facilitate the analyses of FTCC methods for multi-UAVs.the formation control strategies under fault-free flight conditions of multi-UAVs are first summarized and analyzed,including the leader-following,behavior-based,virtual structure,collision avoidance,algebraic graph-based,and close formation control methods,which are viewed as the cooperative control methods for multi-UAVs at the pre-fault stage.Then,by considering the various faults encountered by the multi-UAVs,the state-of-the-art developments on individual,leader-following,and distributed FTCC schemes for multi-UAVs are reviewed in detail.Finally,conclusions and challenging issues towards future developments are presented.
基金Project supported by the National Natural Science Foundation of China(Nos.61822304,61673058,61621063,61720106011,and62088101)the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No.U1609214)+1 种基金the Consulting Research Project of the Chinese Academy of Engineering(No.2019-XZ-7)the Beijing Advanced Innovation Center for Intelligent Robots and Systems,and the Peng Cheng Laboratory。
文摘As a cutting-edge branch of unmanned aerial vehicle(UAV)technology,the cooperation of a group of UAVs has attracted increasing attention from both civil and military sectors,due to its remarkable merits in functionality and flexibility for accomplishing complex extensive tasks,e.g.,search and rescue,fire-fighting,reconnaissance,and surveillance.Cooperative path planning(CPP)is a key problem for a UAV group in executing tasks collectively.In this paper,an attempt is made to perform a comprehensive review of the research on CPP for UAV groups.First,a generalized optimization framework of CPP problems is proposed from the viewpoint of three key elements,i.e.,task,UAV group,and environment,as a basis for a comprehensive classification of different types of CPP problems.By following the proposed framework,a taxonomy for the classification of existing CPP problems is proposed to describe different kinds of CPPs in a unified way.Then,a review and a statistical analysis are presented based on the taxonomy,emphasizing the coordinative elements in the existing CPP research.In addition,a collection of challenging CPP problems are provided to highlight future research directions.
基金supported by the National Natural Science Foundation of China(Grant Nos.61425008,61333004 and 61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(Grant No.20135851042)
文摘As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aerial vehicles (UAVs) that are car- rying out a sensing task, this paper presents a Markov decision evolutionary game (MDEG) based learning algorithm. Each in- dividual in the algorithm follows a Markov decision strategy to maximize its payoff against the well known Tit-for-Tat strate- gy. Simulation results demonstrate that the MDEG theory based approach effectively improves the collective payoff of the roam. The proposed algorithm can not only obtain the best action sequence but also a sub-optimal Markov policy that is inde- pendent of the game duration. Furthermore, the paper also studies the emergence of cooperation in the evolution of self-regarded UAVs. The results show that it is the adaptive ability of the MDEG based approach as well as the perfect balance between revenge and forgiveness of the Tit-for-Tat strategy that the emergence of cooperation should be attributed to.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Innovation Found of Air Force Engineering University(KGD08101604)
文摘Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.
基金the National Natural Science Foundation of China(No.61625304)。
文摘Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role in unmanned combat system,which has to ensure the attack by unmanned surface vehicles(USVs)from failure.To meet the challenge,we propose a task allocation algorithm called distributed auction mechanism task allocation with grey wolf optimization(DAGWO).The traditional grey wolf optimization(GWO)algorithm is improved with a distributed auction mechanism(DAM)to constrain the initialization of wolves,which improves the optimization process according to the actual situation.In addition,one unmanned aerial vehicle(UAV)is employed as the central control system to establish task allocation model and construct fitness function for the multiple constraints of USV attack problem.The proposed DAGWO algorithm can not only ensure the diversity of wolves,but also avoid the local optimum problem.Simulation results show that the proposed DAGWO algorithm can effectively solve the problem of attack task allocation among multiple USVs.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
文摘Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.60975072,60604009)the Aeronautical Science Foundation of China(Grant No.2008ZC01006)+2 种基金Beijing NOVA Program Foundation(Grant No.2007A017)the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-01-A18)the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)
文摘Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Foundation of Air Force Engineering University(KGD08101604)
文摘Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.
基金jointly granted by the Science and Technology on Avionics Integration Laboratorythe Aeronautical Science Foundation(2016ZC15008)
文摘Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy.
基金supported by the National Natural Science Foundation of China(60974146)the Natural Science and Engineering Research Council of Canada(NSERC)
文摘Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61673209)the Aeronautical Science Foundation (No.2016ZA52009)
文摘An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.
基金supported by the National Key Research Projects(No.2016YFB0501403)the National Demonstration Center for Experimental Remote Sensing&Information Engineering(Wuhan University)
文摘In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we discuss how to design the encoded sign and propose a robust decoding algorithm based on contour.Secondly,the Adaboost algorithm is used to train a classifier which can detect the encoded sign from image.Lastly,the position of UAV can be calculated by using the projective relation between the object points and their corresponding image points.Experiment includes two parts.First,simulated video data is used to verify the feasibility of the proposed method,and the results show that the average absolute error in each direction is below 0.02 m.Second,a video,acquired from an actual UAV flight,is used to calculate the position of UAV.The results show that the calculated trajectory is consistent with the actual flight path.The method runs at a speed of 0.153 sper frame.
基金the Aeronautical Science Foundation of China(2020Z023053001).
文摘This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius circle to scout a certain destination.As defenders,the UAVs are arranged into three layers:the forward layer,the midfield layer and the back layer.The co-defense mechanism,including the role derivation method of UAV swarm and a guidance law based on the co-defense front point,is introduced for UAV swarm to co-detect the intruder.Besides,five formations are designed for comparative analysis when ten UAVs are applied.Through Monte Carlo experiments and ablation experiment,the effectiveness of the proposed co-defense method has been verified.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.