Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st...Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.展开更多
As an emerging technology,digital twin is expected to bring novel application modes to the whole life cycle process of unmanned ground equipment,including research and development,design,control optimization,operation...As an emerging technology,digital twin is expected to bring novel application modes to the whole life cycle process of unmanned ground equipment,including research and development,design,control optimization,operation and maintenance,etc.The highly dynamic,complex,and uncertain characteristics of unmanned ground equipment and the battlefield environment also pose new challenges for digital twin technology.Starting from the new challenges faced by the digital twin of unmanned ground equipment,this paper designs a service-oriented cloud-edge-end collaborative platform architecture of the digital twin system of unmanned ground equipment,and further analyzes several key technologies supporting the implementation of the platform architecture.展开更多
Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is ...Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.展开更多
With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope...With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.展开更多
In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe mult...In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.展开更多
井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述...井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。展开更多
人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运...人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运动,简化规划模型,解决路径规划中车辆与所在道路相对位置不易表述的问题。提出安全椭圆模型和预测距离的概念来调整势场影响区域,加入基于Frenet坐标系下的参考线势场及动态速度势场改进斥力场函数,解决车辆在静态和动态下的避障问题。利用数学仿真软件进行仿真,以不同车速在直道和弯道场景中对所提出的路径规划方法进行静态和动态避障仿真实验。研究结果表明:不同车速下的前轮转角、横摆角速度均控制在较小范围内,改进算法可以有效解决传统人工势场法的缺陷,同时与快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法相比,其在避障过程中路径规划计算效率提高了42.8%,改进算法优势明显。展开更多
针对通过无线通信网络实现远程控制的地面无人系统,分析了地面无人系统在工作的过程中,网络时延对系统的影响。基于网络时延的分布特性,提出了一种贝叶斯算法(Bayesian algorithm,BO)优化的长短期记忆(long-term and short-term memory,...针对通过无线通信网络实现远程控制的地面无人系统,分析了地面无人系统在工作的过程中,网络时延对系统的影响。基于网络时延的分布特性,提出了一种贝叶斯算法(Bayesian algorithm,BO)优化的长短期记忆(long-term and short-term memory,LSTM)神经网络时延预测模型,在Matlab软件中搭建了该模型,并通过网络时延训练集数据对模型进行了训练,在网络时延测试集数据上对训练好的模型进行了测试,最后,就R2、RMSE和MAE评价指标对测试效果和GRU、BO-GRU以及LSTM预测方法进行了对比,结果表明,BO算法优化的LSTM神经网络时延预测模型RMSE和MAE评价结果更低,预测精度更高,预测效果更好,验证了提出的网络时延预测模型的有效性。展开更多
基金supported by the National Natural Science Foundation of China(Nos.52225402 and U1910206).
文摘Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.
文摘As an emerging technology,digital twin is expected to bring novel application modes to the whole life cycle process of unmanned ground equipment,including research and development,design,control optimization,operation and maintenance,etc.The highly dynamic,complex,and uncertain characteristics of unmanned ground equipment and the battlefield environment also pose new challenges for digital twin technology.Starting from the new challenges faced by the digital twin of unmanned ground equipment,this paper designs a service-oriented cloud-edge-end collaborative platform architecture of the digital twin system of unmanned ground equipment,and further analyzes several key technologies supporting the implementation of the platform architecture.
基金Project(51375029)supported by the National Natural Science Foundation of ChinaProject(20091102120038)supported by Specialized Research Fund for Doctoral Program of Higher Education of China
文摘Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.
基金This work is supported by the Scientific Research Project of Tianjin Education Commission(No.2019KJ128).
文摘With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.
文摘In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.
文摘井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。
文摘人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运动,简化规划模型,解决路径规划中车辆与所在道路相对位置不易表述的问题。提出安全椭圆模型和预测距离的概念来调整势场影响区域,加入基于Frenet坐标系下的参考线势场及动态速度势场改进斥力场函数,解决车辆在静态和动态下的避障问题。利用数学仿真软件进行仿真,以不同车速在直道和弯道场景中对所提出的路径规划方法进行静态和动态避障仿真实验。研究结果表明:不同车速下的前轮转角、横摆角速度均控制在较小范围内,改进算法可以有效解决传统人工势场法的缺陷,同时与快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法相比,其在避障过程中路径规划计算效率提高了42.8%,改进算法优势明显。
文摘针对通过无线通信网络实现远程控制的地面无人系统,分析了地面无人系统在工作的过程中,网络时延对系统的影响。基于网络时延的分布特性,提出了一种贝叶斯算法(Bayesian algorithm,BO)优化的长短期记忆(long-term and short-term memory,LSTM)神经网络时延预测模型,在Matlab软件中搭建了该模型,并通过网络时延训练集数据对模型进行了训练,在网络时延测试集数据上对训练好的模型进行了测试,最后,就R2、RMSE和MAE评价指标对测试效果和GRU、BO-GRU以及LSTM预测方法进行了对比,结果表明,BO算法优化的LSTM神经网络时延预测模型RMSE和MAE评价结果更低,预测精度更高,预测效果更好,验证了提出的网络时延预测模型的有效性。