期刊文献+
共找到713篇文章
< 1 2 36 >
每页显示 20 50 100
Role-based Bayesian decision framework for autonomous unmanned systems
1
作者 PANG Weijian MA Xinyi +2 位作者 LIANG Xueming LIU Xiaogang DONG Erwa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1397-1408,共12页
In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanne... In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems. 展开更多
关键词 autonomous unmanned systems multi-entity Bayesian network(MEBN) situation awareness decision modeling.
下载PDF
Adaptive cooperative secure control of networked multiple unmanned systems under FDI attacks 被引量:1
2
作者 Yanhui Zhang Di Mei +1 位作者 Yong Xu Lihua Dou 《Security and Safety》 2023年第4期102-117,共16页
With the expanding applications of multiple unmanned systems in various fields,more and more research attention has been paid to their security.The aim is to enhance the anti-interference ability,ensure their reliabil... With the expanding applications of multiple unmanned systems in various fields,more and more research attention has been paid to their security.The aim is to enhance the anti-interference ability,ensure their reliability and stability,and better serve human society.This article conducts adaptive cooperative secure tracking consensus of networked multiple unmanned systems subjected to false data injection attacks.From a practical perspective,each unmanned system is modeled using high-order unknown nonlinear discrete-time systems.To reduce the communication bandwidth between agents,a quantizer-based codec mechanism is constructed.This quantizer uses a uniform logarithmic quantizer,combining the advantages of both quantizers.Because the transmission information attached to the false data can affect the accuracy of the decoder,a new adaptive law is added to the decoder to overcome this difficulty.A distributed controller is devised in the backstepping framework.Rigorous mathematical analysis shows that our proposed control algorithms ensure that all signals of the resultant systems remain bounded.Finally,simulation examples reveal the practical utility of the theoretical analysis. 展开更多
关键词 Secure cooperative control networked multiple unmanned systems false data injection attacks encoding-decoding strategy
原文传递
Photovoltaic,thermoelectric and electromagnetic generation technologies applied in power systems for mobile unmanned systems
3
作者 DING Ning WANG XiangYang +3 位作者 XIAN XiaoYang CAI YeYun LIU DaoMing DENG Fang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第3期599-629,共31页
Unmanned systems are increasingly adopted in various fields,becoming an indispensable technology in daily life.Power systems are the lifeblood of unmanned systems,and affect the working time and task complexity.Howeve... Unmanned systems are increasingly adopted in various fields,becoming an indispensable technology in daily life.Power systems are the lifeblood of unmanned systems,and affect the working time and task complexity.However,traditional power systems,such as batteries and fuels have a fixed capacity.Therefore,once the power supply is exhausted and cannot be replenished in time,the unmanned systems will stop working.Hence,researchers have increasingly begun paying attention to renewable energy generation technologies.The principles,advantages,and limitations of renewable energy generation technologies are different,and their application effects in different unmanned systems are also uneven.This paper presents a comprehensive study of the application and development status of photovoltaic,thermoelectric,and magnetoelectric generation technologies in four kinds of unmanned systems,including space,aviation,ground,and water,and then summarizes the adaptability and limitations of the three technologies to different systems.Moreover,future development directions are predicted to enhance the reliability of renewable energy generation technologies in unmanned systems.This is the first study to conduct a comprehensive and detailed study of renewable energy generation technologies applied in unmanned systems.The present work is critical for the development of renewable energy generation technologies and power systems for unmanned systems. 展开更多
关键词 unmanned system renewable energy generation technology photovoltaic generation thermoelectric generation electromagnetic generation
原文传递
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:1
4
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop
5
作者 CHEN Zhiwei ZHOU Ziming +2 位作者 ZHANG Luogeng CUI Chaowei ZHONG Jilong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期588-597,共10页
The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its abili... The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS. 展开更多
关键词 mission reliability unmanned weapon system-ofsystems dynamic reconfiguration effective operation loop
下载PDF
Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence
6
作者 Jiafa Lu Xin Wang +7 位作者 Linghao Chen Xuedong Sun Rui Li Wanjing Zhong Yajing Fu Le Yang Weixiang Liu Wei Han 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2023年第4期273-279,共7页
BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly... BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue. 展开更多
关键词 Mass-casualty incidents Emergency medical service unmanned aerial vehicle Fifth Generation Mobile Communication Technology Artificial intelligence
下载PDF
Optimal Deep Learning Enabled Communication System for Unmanned Aerial Vehicles
7
作者 Anwer Mustafa Hilal Jaber S.Alzahrani +5 位作者 Dalia H.Elkamchouchi Majdy M.Eltahir Ahmed S.Almasoud Abdelwahed Motwakel Abu Sarwar Zamani Ishfaq Yaseen 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期955-969,共15页
Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becom... Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becomes essential to optimally utilize the resources and effective communication among them and base station(BS).Therefore,clustering can be employed as an effective way of accomplishing smart communication systems among multiple UAVs.In this aspect,this paper presents a group teaching optimization algorithm with deep learning enabled smart communication system(GTOADL-SCS)technique for UAV networks.The proposed GTOADL-SCS model encompasses a two stage process namely clustering and classification.At the initial stage,the GTOADL-SCS model includes a GTOA based clustering scheme to elect cluster heads(CHs)and organize clusters.Besides,the GTOADL-SCS model develops a fitness function containing three input parameters as residual energy of UAVs,average neighoring distance,and UAV degree.For classification process,the GTOADLSCS model applies pre-trained densely connected network(DenseNet201)feature extractor with gated recurrent unit(GRU)classifier.For ensuring the enhanced performance of the GTOADL-SCS model,a widespread simulation analysis is performed and the comparative study reported the significant outcomes over the existing approaches with maximum packet delivery ratio(PDR)of 92.60%. 展开更多
关键词 unmanned aerial vehicles energy efficiency smart communication system deep learning
下载PDF
Use of Unmanned Aerial System (UAS) Phenotyping to Predict Pod and Seed Yield in Organic Peanuts
8
作者 Aurora Manley Waltram Ravelombola +6 位作者 John Cason Brian Bennett Hanh Pham Emi Kimura Caroline Ruhl Waqas Ahmad Madeline Brown 《American Journal of Plant Sciences》 CAS 2023年第3期415-426,共12页
Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a health... Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection. 展开更多
关键词 PEANUT unmanned Aerial system Vegetation Indices PHENOTYPING Pod Yield Seed Yield
下载PDF
Simulation Analysis of Electromechanical Coupling for Unmanned Aerial Vehicle Cabin Door System
9
作者 Bangjian Wang Xiaohang Hu Hong Nie 《World Journal of Engineering and Technology》 2023年第4期1012-1018,共7页
In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s ... In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s motion with different stiffness of energy-absorbing components, a rigid-flexible coupling model of the cabin door actuation system was established in LMS. Virtual. Motion. In Amesim, a control model of the motor was created. Through the Motion-Amesim co-simulation module, the dynamic module of the system was combined with the motor control module to complete the electromechanical coupling simulation and analyze the results. . 展开更多
关键词 unmanned Aircraft Cabin Door Electromechanical Coupling Virtual Prototype Dynamic Characteristics
下载PDF
Unmanned Ship Identification Based on Improved YOLOv8s Algorithm
10
作者 Chun-Ming Wu Jin Lei +2 位作者 Wu-Kai Liu Mei-Ling Ren Ling-Li Ran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3071-3088,共18页
Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes ... Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm(R_YOLO).The algorithm incorporates the Efficient Multi-Scale Attention mechanism(EMA),the efficient Reparameterized Generalized-feature extraction module(CSPStage),the small target detection header,the Repulsion Loss function,and the context aggregation block(CABlock),which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference.The algorithm is validated in detail on two vessel datasets.The comprehensive experimental results demonstrate that,in the infrared dataset,the YOLOv8s algorithm exhibits improvements in various performance metrics.Specifically,compared to the baseline algorithm,there is a 3.1%increase in mean average precision at a threshold of 0.5(mAP(0.5)),a 5.4%increase in recall rate,and a 2.2%increase in mAP(0.5:0.95).Simultaneously,while less than 5 times parameters,the mAP(0.5)and frames per second(FPS)exhibit an increase of 1.7%and more than 3 times,respectively,compared to the CAA_YOLO algorithm.Finally,the evaluation indexes on the visible light data set have shown an average improvement of 4.5%. 展开更多
关键词 unmanned ships R_YOLO EMA CSPStage YOLOv8s
下载PDF
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
11
作者 Usman Khan Muhammad Khalid Khan +4 位作者 Muhammad Ayub Latif Muhammad Naveed Muhammad Mansoor Alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
Optimization of Center of Gravity Position and Anti-Wave Plate Angle of Amphibious Unmanned Vehicle Based on Orthogonal Experimental Method
12
作者 Deyong Shang Xi Zhang +3 位作者 Fengqi Liang Chunde Zhai Hang Yang Yanqi Niu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2027-2041,共15页
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig... When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%. 展开更多
关键词 Amphibious unmanned vehicle orthogonal experimental design anti-wave plate center of gravity resistance characteristic
下载PDF
Adaptive Sensor-Fault Tolerant Control of Unmanned Underwater Vehicles With Input Saturation
13
作者 Xuerao Wang Qingling Wang +2 位作者 Yanxu Su Yuncheng Ouyang Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期907-918,共12页
This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault... This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Asymptotic stability fault-tolerant control input saturation robust integral of the sign of error unmanned underwater vehicle
下载PDF
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
14
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
下载PDF
Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
15
作者 田婧希 金松昌 +2 位作者 张晓强 杨绍武 史殿习 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期292-304,共13页
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.... Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks. 展开更多
关键词 hyperchaotic system elliptic curve cryptosystem(ECC) 3D synchronous scrambled diffusion remote sensing image unmanned aerial vehicle(UAV)
下载PDF
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment
16
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
17
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 unmanned aerial vehicle(UAV) Uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
Average Secrecy Capacity of the Reconfigurable Intelligent Surface-Assisted Integrated Satellite Unmanned Aerial Vehicle Relay Networks
18
作者 Ping Li Kefeng Guo +2 位作者 Feng Zhou XuelingWang Yuzhen Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1849-1864,共16页
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e... Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings. 展开更多
关键词 Integrated satellite unmanned aerial vehicle relay networks reconfigurable intelligent surface average secrecy capacity(ASC) asymptotic ASC
下载PDF
Assessment of Meteorological Threats to the Coordinated Search and Rescue of Unmanned/Manned Aircraft
19
作者 Fei YAN Chuan LI +2 位作者 Xiaoyi FU Kefeng WU Yuying LI 《Meteorological and Environmental Research》 2024年第1期27-29,37,共4页
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate... The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance. 展开更多
关键词 unmanned/manned aircraft Coordinated search and rescue Assessment of meteorological threats Meteorological data
下载PDF
Structural Design Study of Air-Dropped Unmanned Maritime Mobile Search and Rescue Platforms
20
作者 Zhiming Feng Lingzhe Kong Zhongyu Cui 《Journal of Electronic Research and Application》 2024年第3期234-242,共9页
In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that... In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that can be delivered by a large transport aircraft.This paper studies the structural design scheme of the platform,and the main scale of the platform,the choice of power system and the impact resistance performance are considered in the design process to ensure its rapid response and effective rescue capability under complex sea conditions.Simulation results show that the platform can withstand the impact of air injection into the water and the shipboard equipment can operate normally under the impact load,thus verifying the feasibility and safety of the design.This study serves to improve the maritime search and rescue system and enhance the oceanic emergency response capability. 展开更多
关键词 Maritime search and rescue unmanned maritime platform Maritime airdrop Impact resistance simulation
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部