In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relati...In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relationship between state variables and stress variables of BCS,and the coupled consolidation theory for unsaturated soils was employed to simulate the change in the major principal stress of the subgrade soils caused by water loss shrinkage of BCS with the help of Abaqus 6.11 codes.The simulation results indicate that the water losing shrinkage of BCS causes tensile stress within the subgrade,which leads to embankment cracking.The crack depth decreases with the increase in the BCS replacement depth and the embankment height,and increases with the increase in the burial depth of BCS.In the distribution area of deep BCS,the key values of foundation replacement depth for controlling the crack depth of the embankment with the height of 1 to 4 m are 1.2 and 1.5 m.In the low filling section,when the buried depth of BCS is 2,3 and 4 m,the key values of the foundation replacement depth to control the crack depth of the embankment are 0.8 and 1.2 m.In order to control the embankment cracking induced by the water losing shrinkage of BCS,a reasonable replacement depth of the foundation should be selected while slope protection is carried out well.展开更多
基金The National Natural Science Foundation of China(No.51778139)the Construction System Science and Technology Project of Jiangsu Province(No.2019ZD058).
文摘In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relationship between state variables and stress variables of BCS,and the coupled consolidation theory for unsaturated soils was employed to simulate the change in the major principal stress of the subgrade soils caused by water loss shrinkage of BCS with the help of Abaqus 6.11 codes.The simulation results indicate that the water losing shrinkage of BCS causes tensile stress within the subgrade,which leads to embankment cracking.The crack depth decreases with the increase in the BCS replacement depth and the embankment height,and increases with the increase in the burial depth of BCS.In the distribution area of deep BCS,the key values of foundation replacement depth for controlling the crack depth of the embankment with the height of 1 to 4 m are 1.2 and 1.5 m.In the low filling section,when the buried depth of BCS is 2,3 and 4 m,the key values of the foundation replacement depth to control the crack depth of the embankment are 0.8 and 1.2 m.In order to control the embankment cracking induced by the water losing shrinkage of BCS,a reasonable replacement depth of the foundation should be selected while slope protection is carried out well.