期刊文献+
共找到345篇文章
< 1 2 18 >
每页显示 20 50 100
State Estimation of Drive-by-Wire Chassis Vehicle Based on Dual Unscented Particle Filter Algorithm
1
作者 Zixu Wang Chaoning Chen +2 位作者 Quan Jiang Hongyu Zheng Chuyo Kaku 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期99-113,共15页
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles... Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states. 展开更多
关键词 Drive-by-wire chassis vehicle Vehicle state estimation Dual unscented particle filter Tire force estimation unscented particle filter
下载PDF
An unscented particle filter for ground maneuvering target tracking 被引量:6
2
作者 GUO Rong-hua QIN Zheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第10期1588-1595,共8页
In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unsc... In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter. 展开更多
关键词 Interacting multiple model (IMM) unscented particle filter (upf Ground target tracking particle filter (PF)
下载PDF
Modified unscented particle filter for nonlinear Bayesian tracking 被引量:14
3
作者 Zhan Ronghui Xin Qin Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期7-14,共8页
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv... A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 展开更多
关键词 Bayesian estimation modified unscented particle filter nonlinear filtering unscented Kalman filter
下载PDF
MLP training in a self-organizing state space model using unscented Kalman particle filter 被引量:3
4
作者 Yanhui Xi Hui Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期141-146,共6页
Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF... Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods. 展开更多
关键词 multi-layer perceptron (MLP) Bayesian method self-organizing state space (SOSS) unscented Kalman particle filter(upf).
下载PDF
Simplified unscented particle filter for nonlinear/non-Gaussian Bayesian estimation 被引量:6
5
作者 Junyi Zuo Yingna Jia Quanxue Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期537-544,共8页
Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in desi... Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter. 展开更多
关键词 nonlinear filtering particle filter unscented Kalman filter importance density function.
下载PDF
Federated unscented particle filtering algorithm for SINS/CNS/GPS system 被引量:7
6
作者 胡海东 黄显林 +1 位作者 李明明 宋卓越 《Journal of Central South University》 SCIE EI CAS 2010年第4期778-785,共8页
To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-... To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models. 展开更多
关键词 navigation system integrated navigation unscented Kalman filter unscented particle filter
下载PDF
Vehicle State and Parameter Estimation Based on Dual Unscented Particle Filter Algorithm 被引量:4
7
作者 林棻 王浩 +2 位作者 王伟 刘存星 谢春利 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期568-575,共8页
Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a... Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a new estimating method is proposed.First the nonlinear vehicle dynamics system,containing inaccurate model parameters and constant noise,is established.Then a dual unscented particle filter(DUPF)algorithm is proposed.In the algorithm two unscented particle filters run in parallel,states estimation and parameters estimation update each other.The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state estimation accuracy than unscented Kalman filter(UKF)and dual extended Kalman filter(DEKF),and it also has good capability to revise model parameters. 展开更多
关键词 vehicle dynamics dual unscented particle filter(Dupf) state estimation virtual experiment
下载PDF
Unscented Particle Filter Algorithm for Ballistic Target Tracking 被引量:1
8
作者 ZHAI Yan GUO Xiaobo YAN Yonggang 《International Journal of Technology Management》 2014年第8期122-124,共3页
At present, the ballistic Target tracking has a higher demand in convergence rate and tracking precision of filter algorithm. In the paper, a filter algorithm was improved based on particle filter. The algorithm was c... At present, the ballistic Target tracking has a higher demand in convergence rate and tracking precision of filter algorithm. In the paper, a filter algorithm was improved based on particle filter. The algorithm was carried out from the aspects such as particle degradation and particle diversity lack. A novel ballistic coefficient parameter model was built, and was expanded to the state vector for filtering. Finally, the improved algorithm was simulated by MATLAB software. The simulation results show that the algorithm can obtain better convergence speed and tracking precision. 展开更多
关键词 unscented particle filter reentry target ballistic target tracking filtering.
下载PDF
基于平方根UPF的电力系统鲁棒预测状态估计
9
作者 王要强 赵楷 +2 位作者 王义 王克文 梁军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期119-126,142,共9页
针对辅助预测状态估计器在迭代计算中会出现状态预测误差协方差矩阵不正定,导致估计精度差甚至发散的问题,提出了基于平方根UPF的电力系统鲁棒辅助预测状态估计。该方法采用两种数学方法:矩阵Cholesky分解因子更新和矩阵QR分解,引入平... 针对辅助预测状态估计器在迭代计算中会出现状态预测误差协方差矩阵不正定,导致估计精度差甚至发散的问题,提出了基于平方根UPF的电力系统鲁棒辅助预测状态估计。该方法采用两种数学方法:矩阵Cholesky分解因子更新和矩阵QR分解,引入平方根技术动态更新状态预测误差协方差矩阵以保持状态预测误差协方差矩阵的正定性。运用MATLAB进行仿真模拟测试,结果表明:IEEE 30节点系统非高斯噪声测试中,平方根UPF电压相角的均方根误差平均值为UPF相应测试值的0.09%,平方根UPF电压幅值的均方根误差平均值为UPF相应测试值的0.14%;IEEE 57节点系统非高斯噪声测试中,平方根UPF电压相角的均方根误差平均值为UPF相应测试值的0.67%,平方根UPF电压幅值的均方根误差平均值为UPF相应测试值的0.57%。所提出的平方根UPF对解决辅助预测状态估计中状态预测误差协方差矩阵不正定的问题具有很好的效果,具有更高估计精度和鲁棒性。 展开更多
关键词 电力系统 无迹粒子滤波 鲁棒辅助预测状态估计 不正定性 平方根upf
下载PDF
基于LSTM-UPF混合驱动方法的燃料电池寿命预测 被引量:2
10
作者 曾其权 罗马吉 +1 位作者 杨印龙 黄庆泽 《储能科学与技术》 CAS CSCD 北大核心 2024年第3期963-970,共8页
燃料电池的寿命预测是燃料电池健康管理的重要组成部分,可为燃料电池的运行和维护提供指导性意见。为提高寿命预测的工况适应性并保证预测精度,本工作结合长短期记忆神经网络(long short-term memory neural network,LSTM)和无迹粒子滤... 燃料电池的寿命预测是燃料电池健康管理的重要组成部分,可为燃料电池的运行和维护提供指导性意见。为提高寿命预测的工况适应性并保证预测精度,本工作结合长短期记忆神经网络(long short-term memory neural network,LSTM)和无迹粒子滤波(unscented particle filter,UPF)两种算法的优势,提出了一种LSTMUPF混合驱动方法进行稳态和准动态工况下燃料电池的寿命预测。该方法首先优化训练预测模型的实验数据并采用离散小波变换(discrete wavelet transform,DWT)技术将其分解为高频部分和低频部分,使用LSTM算法对这两部分分别进行预测实现对燃料电池长期老化趋势的预测,并使用修正因子对趋势预测结果进行漂移修正,然后利用得到的燃料电池长期老化趋势,根据UPF算法对燃料电池的剩余使用寿命(remaining useful life,RUL)进行估计。采用预测寿命终点、预测寿命误差、置信区间宽度、RUL预测误差等评价指标对不同寿命预测方法进行对比分析,结果表明,LSTM-UPF混合预测方法对燃料电池稳态工况和准动态工况的RUL预测误差分别为4.1%和3.4%,比基于模型的PF和UPF方法具有更精确的RUL预测结果与高质量的预测置信区间,工况适应性良好。本研究有助于提高多工况下的燃料电池寿命预测精度和置信度。 展开更多
关键词 质子交换膜燃料电池 寿命预测 长短期记忆神经网络 无迹粒子滤波
下载PDF
On-line Estimation in Fed-batch Fermentation Process Using State Space Model and Unscented Kalman Filter 被引量:13
11
作者 王建林 赵利强 于涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期258-264,共7页
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta... On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process. 展开更多
关键词 on-line estimation simplified mechanistic model support vector machine particle swarm optimization unscented Kalman filter
下载PDF
Gaussian particle filter based pose and motion estimation 被引量:1
12
作者 WU Xue-dong SONG Zhi-huan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第10期1604-1613,共10页
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fi... Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF. 展开更多
关键词 Gaussian particle filter (GPF) Pose and motion estimation Line features Monocular vision Extended Kalman filter(EKF) unscented Kalman filter (UKF) Dual quatemion
下载PDF
Nonlinear Filtering With Sample-Based Approximation Under Constrained Communication:Progress, Insights and Trends
13
作者 Weihao Song Zidong Wang +2 位作者 Zhongkui Li Jianan Wang Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1539-1556,共18页
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filt... The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm. 展开更多
关键词 Communication constraints maximum correntropy filter networked nonlinear filtering particle filter sample-based approximation unscented Kalman filter
下载PDF
A new improved filter for target tracking: compressed iterative particle filter
14
作者 Hongbo Zhu Hai Zhao +1 位作者 Dan Liu Chunhe Song 《Natural Science》 2011年第4期301-306,共6页
Target tracking in video is a hot topic in computer vision field, which has wide applications in surveillance, robot navigation and human-machine interaction etc. Meanshift is widely used algorithm in video target tra... Target tracking in video is a hot topic in computer vision field, which has wide applications in surveillance, robot navigation and human-machine interaction etc. Meanshift is widely used algorithm in video target tracking field. The basic mean shift algorithm only considers the color of targets as the tracking characteris- tic feature, so if the appearance of the target changes greatly or there exits other objects whose color is similar to the target, the tracking process will fail. To enhance the stability and robustness of the algorithm, we introduce par- ticle filter into the tracking process. Basic particle filter has some disadvantages such as low accuracy, high computational complexity. In this paper, an improved particle filter GA-UPF was proposed, in which a new re-sampling algorithm was used to predict target centroid position. The target tracking system of binocular stereo vision is designed and implemented. Experi- mental results have shown that our algorithm can tracking object in video with high accuracy and low computational complexity. 展开更多
关键词 filterING Method particle filterING unscented particle filter GENETIC Algorithm Target Tracking
下载PDF
Estimation Performance for the Cubature Particle Filter under Nonlinear/Non-Gaussian Environments
15
作者 Dah-Jing Jwo Chien-Hao Tseng 《Computers, Materials & Continua》 SCIE EI 2021年第5期1555-1575,共21页
This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle lter(CPF),which is an estimation algorithm that combines the cubature Kalman lter(CKF)and... This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle lter(CPF),which is an estimation algorithm that combines the cubature Kalman lter(CKF)and the particle lter(PF).The CPF is essentially a realization of PF where the third-degree cubature rule based on numerical integration method is adopted to approximate the proposal distribution.It is benecial where the CKF is used to generate the importance density function in the PF framework for effectively resolving the nonlinear/non-Gaussian problems.Based on the spherical-radial transformation to generate an even number of equally weighted cubature points,the CKF uses cubature points with the same weights through the spherical-radial integration rule and employs an analytical probability density function(pdf)to capture the mean and covariance of the posterior distribution using the total probability theorem and subsequently uses the measurement to update with Bayes’rule.It is capable of acquiring a maximum a posteriori probability estimate of the nonlinear system,and thus the importance density function can be used to approximate the true posterior density distribution.In Bayesian ltering,the nonlinear lter performs well when all conditional densities are assumed Gaussian.When applied to the nonlinear/non-Gaussian distribution systems,the CPF algorithm can remarkably improve the estimation accuracy as compared to the other particle lterbased approaches,such as the extended particle lter(EPF),and unscented particle lter(UPF),and also the Kalman lter(KF)-type approaches,such as the extended Kalman lter(EKF),unscented Kalman lter(UKF)and CKF.Two illustrative examples are presented showing that the CPF achieves better performance as compared to the other approaches. 展开更多
关键词 Nonlinear estimation NON-GAUSSIAN Kalman lter unscented Kalman lter cubature particle filter
下载PDF
Particle Filter for Estimation and Tracking
16
作者 王继贞 赵增顺 +1 位作者 安笑伟 田淑霞 《Journal of Measurement Science and Instrumentation》 CAS 2010年第3期267-270,共4页
In recent years, the particle filter technique has been widely used in tracking, estimation and navigation. In this paper, the authors described several practical filters including the general practical, the extended ... In recent years, the particle filter technique has been widely used in tracking, estimation and navigation. In this paper, the authors described several practical filters including the general practical, the extended Kaman practical, and the unsented particle filters. And they explained the degeneracy problem in the practical filter protess, and introduced some solved methods. Finally they demonstrated the estimation of different particle filters in non-liner and non-Gaussian situation respectively. The result proved the unscented particle filter had the best performance. 展开更多
关键词 particle filter extended Kaman practical filter unscented particle filter
下载PDF
Particle Filtering Optimized by Swarm Intelligence Algorithm
17
作者 Wei Jing Hai Zhao +1 位作者 Chunhe Song Dan Liu 《Journal of Intelligent Learning Systems and Applications》 2010年第1期49-53,共5页
A new filtering algorithm — PSO-UPF was proposed for nonlinear dynamic systems. Basing on the concept of re-sampling, particles with bigger weights should be re-sampled more time, and in the PSO-UPF, after calculatin... A new filtering algorithm — PSO-UPF was proposed for nonlinear dynamic systems. Basing on the concept of re-sampling, particles with bigger weights should be re-sampled more time, and in the PSO-UPF, after calculating the weight of particles, some particles will join in the refining process, which means that these particles will move to the region with higher weights. This process can be regarded as one-step predefined PSO process, so the proposed algo-rithm is named PSO-UPF. Although the PSO process increases the computing load of PSO-UPF, but the refined weights may make the proposed distribution more closed to the poster distribution. The proposed PSO-UPF algorithm was compared with other several filtering algorithms and the simulating results show that means and variances of PSO-UPF are lower than other filtering algorithms. 展开更多
关键词 filterING Method particle filterING unscented KALMAN filter particle SWARM OPTIMIZER
下载PDF
一种新的抗差自适应Unscented粒子滤波 被引量:8
18
作者 薛丽 高社生 王建超 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第3期470-475,共6页
针对粒子滤波存在的重要性密度函数难以选取和可能出现粒子退化的问题。提出了一种新的抗差自适应Unscented粒子滤波算法。该算法不但能利用等价权函数和自适应因子合理的分配信息,提高滤波精度,而且具有Unscented粒子滤波的优点,更好... 针对粒子滤波存在的重要性密度函数难以选取和可能出现粒子退化的问题。提出了一种新的抗差自适应Unscented粒子滤波算法。该算法不但能利用等价权函数和自适应因子合理的分配信息,提高滤波精度,而且具有Unscented粒子滤波的优点,更好的适用于非线性、非高斯系统模型的计算。仿真结果表明,文中提出的抗差自适应Unscented粒子滤波算法,滤波性能明显优于扩展卡尔曼滤波和粒子滤波算法,并且能提高组合导航系统的定位精度。 展开更多
关键词 unscented粒子滤波 抗差估计 等价权 自适应因子
下载PDF
基于粒子群优化的Unscented粒子滤波算法 被引量:4
19
作者 李睿 苑柳青 李明 《计算机工程》 CAS CSCD 北大核心 2011年第13期153-155,共3页
针对Unscented粒子滤波(UPF)算法中的粒子退化及重采样引起的粒子枯竭等问题,利用粒子群优化算法使粒子通过比较其当前值与最优粒子的适应度值调整自身速度,向高似然域移动,寻找最优位置,并对重采样过程进行优化,以缓解粒子的退化及枯... 针对Unscented粒子滤波(UPF)算法中的粒子退化及重采样引起的粒子枯竭等问题,利用粒子群优化算法使粒子通过比较其当前值与最优粒子的适应度值调整自身速度,向高似然域移动,寻找最优位置,并对重采样过程进行优化,以缓解粒子的退化及枯竭问题。实验结果证明,该算法提高了UPF算法的状态估计精度。 展开更多
关键词 unscented粒子滤波 粒子群优化算法 粒子退化 粒子枯竭 重采样
下载PDF
Unscented粒子滤波算法在合成孔径声纳组合导航中的应用 被引量:6
20
作者 李厚全 李恒 +1 位作者 唐劲松 苑秉成 《海军工程大学学报》 CAS 北大核心 2010年第3期26-31,共6页
研究了基于捷联惯导(SINS)、多普勒声速剖面仪(ADCP)的水下组合导航方法。建立了基于四元数的SINS/ADCP误差模型。针对一般粒子滤波算法中存在的粒子退化问题,对Unscented粒子滤波算法进行了研究,并应用于SAS导航模型。算法采用Unscente... 研究了基于捷联惯导(SINS)、多普勒声速剖面仪(ADCP)的水下组合导航方法。建立了基于四元数的SINS/ADCP误差模型。针对一般粒子滤波算法中存在的粒子退化问题,对Unscented粒子滤波算法进行了研究,并应用于SAS导航模型。算法采用Unscented卡尔曼滤波(UKF)引入了最新观测量来产生粒子滤波(PF)的建议密度分布,提高了状态估计的性能。仿真结果表明:在SAS复杂的运动情况下,UPF算法比传统粒子滤波算法具有更高的精度。 展开更多
关键词 合成孔径声纳 组合导航 粒子滤波 upf
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部