Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupe...Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation.展开更多
For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the ...For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment.展开更多
基金This work was supported by the national key research development plan(Project No.YS2018YFB1403703)research project of the communication university of china(Project No.CUC200D058).
文摘Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation.
文摘For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment.