Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s...Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.展开更多
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst...Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.展开更多
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign...Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.展开更多
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders...As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.展开更多
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ...Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.展开更多
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual...Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.展开更多
In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or expl...In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods.展开更多
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ...This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...展开更多
The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowle...The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.展开更多
Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features ma...Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.展开更多
Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment im...Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment image correctly. Enlightened from segmentation based on fuzzy theories, soft class-map is constracted to solve that problem. The definitions of values and other related ones are adjusted according to the soft class-map. With more detailed values obtained from soft class map, more color distribution information is preserved. Experiments on a synthetic image and many other color images illustrate that JSEG with soft class-map can solve efficiently the problem that in a region there may exist color gradual variation in a smooth transition. It is a more robust method especially for images which haven' t been heavily blurred near boundaries of underlying regions.展开更多
An implementation of adaptive filtering, composed of an unsupervised adaptive filter (UAF), a multi-step forward linear predictor (FLP), and an unsupervised multi-step adaptive predictor (UMAP), is built for sup...An implementation of adaptive filtering, composed of an unsupervised adaptive filter (UAF), a multi-step forward linear predictor (FLP), and an unsupervised multi-step adaptive predictor (UMAP), is built for suppressing impulsive noise in unknown circumstances. This filtering scheme, called unsupervised robust adaptive filter (URAF), possesses a switching structure, which ensures the robustness against impulsive noise. The FLP is used to detect the possible impulsive noise added to the signal, if the signal is "impulse-free", the filter UAF can estimate the clean sig- nal. If there exists impulsive noise, the impulse corrupted samples are replaced by predicted ones from the FLP, and then the UMAP estimates the clean signal. Both the simulation and experimental results show that the URAF has a better rate of convergence than the most recent universal filter, and is effective to restrict large disturbance like impulsive noise when the universal filter fails.展开更多
As a generative model,Latent Dirichlet Allocation Model,which lacks optimization of topics' discrimination capability focuses on how to generate data,This paper aims to improve the discrimination capability throug...As a generative model,Latent Dirichlet Allocation Model,which lacks optimization of topics' discrimination capability focuses on how to generate data,This paper aims to improve the discrimination capability through unsupervised feature selection.Theoretical analysis shows that the discrimination capability of a topic is limited by the discrimination capability of its representative words.The discrimination capability of a word is approximated by the Information Gain of the word for topics,which is used to distinguish between "general word" and "special word" in LDA topics.Therefore,we add a constraint to the LDA objective function to let the "general words" only happen in "general topics" other than "special topics".Then a heuristic algorithm is presented to get the solution.Experiments show that this method can not only improve the information gain of topics,but also make the topics easier to understand by human.展开更多
Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi c...Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi cation in the application of this technology.This paper introduces a spectral clustering technique for unsupervised seismic facies analysis.This algorithm is based on on the idea of a graph to cluster the data.Its kem is that seismic data are regarded as points in space,points can be connected with the edge and construct to graphs.When the graphs are divided,the weights of the edges between the different subgraphs are as low as possible,whereas the weights of the inner edges of the subgraph should be as high as possible.That has high computational complexity and entails large memory consumption for spectral clustering algorithm.To solve the problem this paper introduces the idea of sparse representation into spectral clustering.Through the selection of a small number of local sparse representation points,the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation.Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis.The computing efficiency of this new method is better than that of the conventional spectral clustering method,thereby meeting the application needs of fi eld seismic data.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
This study aimed at a comparison of the effectiveness of social skills training and anger management on adjustment of unsupervised girl adolescents between 15 - 18 years old in Tehran. This research was an experimenta...This study aimed at a comparison of the effectiveness of social skills training and anger management on adjustment of unsupervised girl adolescents between 15 - 18 years old in Tehran. This research was an experimental one with plan of pre-test and post-test control groups. The statistical universe of this research was consisted of all unsupervised girl adolescents between 15 - 18 years old in Tehran. The subject was 35 unsupervised girl adolescents who are assigned to two groups: experimental and control group. Data were collected by using the Adjustment Inventory for School Students (AISS). Multivariate analysis of covariance showed that the social skills training and anger management significantly increased social, emotional and educational adjustment on the experimental group (P < 0. 05). But Tukey’s follow-up test showed that there wasn’t significant difference between effectiveness of training anger control on compatibility and effectiveness of training social skills on individuals’ total compatibility. Findings showed that both trainings could be used in the same extent in order to enhance compatibility level.展开更多
Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed;among ...Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed;among them, multidimensional histogram methods have been investigated but their implementation stays difficult due to the big size of histograms. We present an original method for segmenting n-D (where n is the number of components in image) images or multidimensional images in an unsupervised way using a fuzzy neighbourhood model. It is based on the hierarchical analysis of full n-D compact histograms integrating a fuzzy connected components labelling algorithm that we have realized in this work. Each peak of the histo- gram constitutes a class kernel, as soon as it encloses a number of pixels greater than or equal to a secondary arbitrary threshold knowing that a first threshold was set to define the degree of binary fuzzy similarity be- tween pixels. The use of a lossless compact n-D histogram allows a drastic reduction of the memory space necessary for coding it. As a consequence, the segmentation can be achieved without reducing the colors population of images in the classification step. It is shown that using n-D compact histograms, instead of 1-D and 2-D ones, leads to better segmentation results. Various images were segmented;the evaluation of the quality of segmentation in supervised and unsupervised of segmentation method proposed compare to the classification method k-means gives better results. It thus highlights the relevance of our approach, which can be used for solving many problems of segmentation.展开更多
:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project...:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC.展开更多
Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems.Many issues in this field still unsolved,so several modern anomaly detection methods struggle...Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems.Many issues in this field still unsolved,so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data.Such a phenomenon is referred to as the“curse of dimensionality”that affects traditional techniques in terms of both accuracy and performance.Thus,this research proposed a hybrid model based on Deep Autoencoder Neural Network(DANN)with five layers to reduce the difference between the input and output.The proposed model was applied to a real-world gas turbine(GT)dataset that contains 87620 columns and 56 rows.During the experiment,two issues have been investigated and solved to enhance the results.The first is the dataset class imbalance,which solved using SMOTE technique.The second issue is the poor performance,which can be solved using one of the optimization algorithms.Several optimization algorithms have been investigated and tested,including stochastic gradient descent(SGD),RMSprop,Adam and Adamax.However,Adamax optimization algorithm showed the best results when employed to train theDANNmodel.The experimental results show that our proposed model can detect the anomalies by efficiently reducing the high dimensionality of dataset with accuracy of 99.40%,F1-score of 0.9649,Area Under the Curve(AUC)rate of 0.9649,and a minimal loss function during the hybrid model training.展开更多
Person re-identification(re-ID)aims to match images of the same pedestrian across different cameras.It plays an important role in the field of security and surveillance.Although it has been studied for many years,it i...Person re-identification(re-ID)aims to match images of the same pedestrian across different cameras.It plays an important role in the field of security and surveillance.Although it has been studied for many years,it is still considered as an unsolved problem.Since the rise of deep learning,the accuracy of supervised person re-ID on public datasets has reached the highest level.However,these methods are difficult to apply to real-life scenarios because a large number of labeled training data is required in this situation.Pedestrian identity labeling,especially cross-camera pedestrian identity labeling,is heavy and expensive.Why we cannot apply the pre-trained model directly to the unseen camera network?Due to the existence of domain bias between source and target environment,the accuracy on target dataset is always low.For example,the model trained on the mall needs to adapt to the new environment of airport obviously.Recently,some researches have been proposed to solve this problem,including clustering-based methods,GAN-based methods,co-training methods and unsupervised domain adaptation methods.展开更多
基金Science and Technology Research Project of the Henan Province(222102240014).
文摘Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
基金supported in part by the National Natural Science Foundation of China(Grants 62376172,62006163,62376043)in part by the National Postdoctoral Program for Innovative Talents(Grant BX20200226)in part by Sichuan Science and Technology Planning Project(Grants 2022YFSY0047,2022YFQ0014,2023ZYD0143,2022YFH0021,2023YFQ0020,24QYCX0354,24NSFTD0025).
文摘Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
基金supported in part by the National Key Research and Development Program of China(2020YFB1313002)the National Natural Science Foundation of China(62276023,U22B2055,62222302,U2013202)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-22-003C1)the Postgraduate Education Reform Project of Henan Province(2021SJGLX260Y)。
文摘Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.
基金financially supported by the Natural Science Foundation of China(Grant No.42301492)the National Key R&D Program of China(Grant Nos.2022YFF0711600,2022YFF0801201,2022YFF0801200)+3 种基金the Major Special Project of Xinjiang(Grant No.2022A03009-3)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(Grant No.KF-2022-07014)the Opening Fund of the Key Laboratory of the Geological Survey and Evaluation of the Ministry of Education(Grant No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.
基金supported by the MOE(Ministry of Education of China)Project of Humanities and Social Sciences(23YJAZH169)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T2020017)Henan Foreign Experts Project No.HNGD2023027.
文摘Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.
文摘Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.
文摘In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods.
文摘This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant No.F2016203421)
文摘The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan periodthe UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.
文摘Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment image correctly. Enlightened from segmentation based on fuzzy theories, soft class-map is constracted to solve that problem. The definitions of values and other related ones are adjusted according to the soft class-map. With more detailed values obtained from soft class map, more color distribution information is preserved. Experiments on a synthetic image and many other color images illustrate that JSEG with soft class-map can solve efficiently the problem that in a region there may exist color gradual variation in a smooth transition. It is a more robust method especially for images which haven' t been heavily blurred near boundaries of underlying regions.
基金supported by the National Science Fund for Distinguished Young Scholars of China (60925011)
文摘An implementation of adaptive filtering, composed of an unsupervised adaptive filter (UAF), a multi-step forward linear predictor (FLP), and an unsupervised multi-step adaptive predictor (UMAP), is built for suppressing impulsive noise in unknown circumstances. This filtering scheme, called unsupervised robust adaptive filter (URAF), possesses a switching structure, which ensures the robustness against impulsive noise. The FLP is used to detect the possible impulsive noise added to the signal, if the signal is "impulse-free", the filter UAF can estimate the clean sig- nal. If there exists impulsive noise, the impulse corrupted samples are replaced by predicted ones from the FLP, and then the UMAP estimates the clean signal. Both the simulation and experimental results show that the URAF has a better rate of convergence than the most recent universal filter, and is effective to restrict large disturbance like impulsive noise when the universal filter fails.
基金supported by National Nature Science Foundation of China under Grant No.60905017,61072061National High Technical Research and Development Program of China(863 Program)under Grant No.2009AA01A346+1 种基金111 Project of China under Grant No.B08004the Special Project for Innovative Young Researchers of Beijing University of Posts and Telecommunications
文摘As a generative model,Latent Dirichlet Allocation Model,which lacks optimization of topics' discrimination capability focuses on how to generate data,This paper aims to improve the discrimination capability through unsupervised feature selection.Theoretical analysis shows that the discrimination capability of a topic is limited by the discrimination capability of its representative words.The discrimination capability of a word is approximated by the Information Gain of the word for topics,which is used to distinguish between "general word" and "special word" in LDA topics.Therefore,we add a constraint to the LDA objective function to let the "general words" only happen in "general topics" other than "special topics".Then a heuristic algorithm is presented to get the solution.Experiments show that this method can not only improve the information gain of topics,but also make the topics easier to understand by human.
基金This work was supported by National Natural Science Foundation of China(Nos.U1562218,41604107,and 41804126).
文摘Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi cation in the application of this technology.This paper introduces a spectral clustering technique for unsupervised seismic facies analysis.This algorithm is based on on the idea of a graph to cluster the data.Its kem is that seismic data are regarded as points in space,points can be connected with the edge and construct to graphs.When the graphs are divided,the weights of the edges between the different subgraphs are as low as possible,whereas the weights of the inner edges of the subgraph should be as high as possible.That has high computational complexity and entails large memory consumption for spectral clustering algorithm.To solve the problem this paper introduces the idea of sparse representation into spectral clustering.Through the selection of a small number of local sparse representation points,the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation.Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis.The computing efficiency of this new method is better than that of the conventional spectral clustering method,thereby meeting the application needs of fi eld seismic data.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
文摘This study aimed at a comparison of the effectiveness of social skills training and anger management on adjustment of unsupervised girl adolescents between 15 - 18 years old in Tehran. This research was an experimental one with plan of pre-test and post-test control groups. The statistical universe of this research was consisted of all unsupervised girl adolescents between 15 - 18 years old in Tehran. The subject was 35 unsupervised girl adolescents who are assigned to two groups: experimental and control group. Data were collected by using the Adjustment Inventory for School Students (AISS). Multivariate analysis of covariance showed that the social skills training and anger management significantly increased social, emotional and educational adjustment on the experimental group (P < 0. 05). But Tukey’s follow-up test showed that there wasn’t significant difference between effectiveness of training anger control on compatibility and effectiveness of training social skills on individuals’ total compatibility. Findings showed that both trainings could be used in the same extent in order to enhance compatibility level.
文摘Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed;among them, multidimensional histogram methods have been investigated but their implementation stays difficult due to the big size of histograms. We present an original method for segmenting n-D (where n is the number of components in image) images or multidimensional images in an unsupervised way using a fuzzy neighbourhood model. It is based on the hierarchical analysis of full n-D compact histograms integrating a fuzzy connected components labelling algorithm that we have realized in this work. Each peak of the histo- gram constitutes a class kernel, as soon as it encloses a number of pixels greater than or equal to a secondary arbitrary threshold knowing that a first threshold was set to define the degree of binary fuzzy similarity be- tween pixels. The use of a lossless compact n-D histogram allows a drastic reduction of the memory space necessary for coding it. As a consequence, the segmentation can be achieved without reducing the colors population of images in the classification step. It is shown that using n-D compact histograms, instead of 1-D and 2-D ones, leads to better segmentation results. Various images were segmented;the evaluation of the quality of segmentation in supervised and unsupervised of segmentation method proposed compare to the classification method k-means gives better results. It thus highlights the relevance of our approach, which can be used for solving many problems of segmentation.
基金This paper was supported by the National Natural Science Foundation of China(61772286,61802208,and 61876089)China Postdoctoral Science Foundation Grant 2019M651923Natural Science Foundation of Jiangsu Province of China(BK0191381).
文摘:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC.
基金This research/paper was fully supported by Universiti Teknologi PETRONAS,under the Yayasan Universiti Teknologi PETRONAS(YUTP)Fundamental Research Grant Scheme(YUTP-015LC0-123).
文摘Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems.Many issues in this field still unsolved,so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data.Such a phenomenon is referred to as the“curse of dimensionality”that affects traditional techniques in terms of both accuracy and performance.Thus,this research proposed a hybrid model based on Deep Autoencoder Neural Network(DANN)with five layers to reduce the difference between the input and output.The proposed model was applied to a real-world gas turbine(GT)dataset that contains 87620 columns and 56 rows.During the experiment,two issues have been investigated and solved to enhance the results.The first is the dataset class imbalance,which solved using SMOTE technique.The second issue is the poor performance,which can be solved using one of the optimization algorithms.Several optimization algorithms have been investigated and tested,including stochastic gradient descent(SGD),RMSprop,Adam and Adamax.However,Adamax optimization algorithm showed the best results when employed to train theDANNmodel.The experimental results show that our proposed model can detect the anomalies by efficiently reducing the high dimensionality of dataset with accuracy of 99.40%,F1-score of 0.9649,Area Under the Curve(AUC)rate of 0.9649,and a minimal loss function during the hybrid model training.
文摘Person re-identification(re-ID)aims to match images of the same pedestrian across different cameras.It plays an important role in the field of security and surveillance.Although it has been studied for many years,it is still considered as an unsolved problem.Since the rise of deep learning,the accuracy of supervised person re-ID on public datasets has reached the highest level.However,these methods are difficult to apply to real-life scenarios because a large number of labeled training data is required in this situation.Pedestrian identity labeling,especially cross-camera pedestrian identity labeling,is heavy and expensive.Why we cannot apply the pre-trained model directly to the unseen camera network?Due to the existence of domain bias between source and target environment,the accuracy on target dataset is always low.For example,the model trained on the mall needs to adapt to the new environment of airport obviously.Recently,some researches have been proposed to solve this problem,including clustering-based methods,GAN-based methods,co-training methods and unsupervised domain adaptation methods.