Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge.In this study,a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the...Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge.In this study,a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion,and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration.A laboratory-scale up-flow anaerobic sludge blanket(UASB)reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand(COD),organic loading rate(OLR),and COD/SO_(4)^(2-) ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance.The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO_(4)^(2-) ratio.For the treated sulfamethoxazole pharmaceutical wastewater,a COD of 4983 mg/L(diluted by 50%),OLR of 2.5 kg COD/(m^(3)·d),and COD/SO_(4)^(2-) ratio of more than 5 were suitable for practical applications.The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.展开更多
Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen aft...Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment. Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%, 74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. Thc,dcmand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the inftuent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2015XKMS053).
文摘Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge.In this study,a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion,and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration.A laboratory-scale up-flow anaerobic sludge blanket(UASB)reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand(COD),organic loading rate(OLR),and COD/SO_(4)^(2-) ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance.The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO_(4)^(2-) ratio.For the treated sulfamethoxazole pharmaceutical wastewater,a COD of 4983 mg/L(diluted by 50%),OLR of 2.5 kg COD/(m^(3)·d),and COD/SO_(4)^(2-) ratio of more than 5 were suitable for practical applications.The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.
基金Project (20377013) supported by the National Natural Science Foundation of China project (020959) supported by Department of Science and Technology of Guangdong Province
文摘Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment. Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%, 74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. Thc,dcmand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the inftuent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.