Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat...Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.展开更多
Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.Howeve...Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.However,a limited understanding remains of how formal credit affects herders'household expenses.Based on a survey of 544 herders from the Qinghai-Xizang Plateau of China,this study adopted the propensity score matching approach to identify the effect of formal credit on herders'total household expenses,daily expenses,and productive expenses.The results found that average age,grassland mortgage,and other variables significantly affected herders'participation in formal credit.Formal credit could significantly improve household expenses,especially productive expenses.A heterogeneity analysis showed that formal credit had a greater impact on the household total expense for those at higher levels of wealth;however,it significantly affected the productive expense of herders at lower wealth levels.Moreover,the mediating effect indicated that formal credit could affect herders'household income,thus influencing their household expenses.Finally,this study suggests that policies should improve herders'accessibility to formal credit.展开更多
Characteristics of root pullout resistance determine the capacity to withstand uprooting and the slope protection ability of plants.However,mechanism underlying the uprooting of taproot-type shrub species in the loess...Characteristics of root pullout resistance determine the capacity to withstand uprooting and the slope protection ability of plants.However,mechanism underlying the uprooting of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau,China remains unclear.In this study,a common taproot-type shrub,Caragana korshinskii Kom.,in northeastern Qinghai-Xizang Plateau was selected as the research material.Mechanism of root-soil interaction of vertical root of C.korshinskii was investigated via a combination of a single-root pullout test and numerical simulation analysis.The results indicated that,when pulling vertically,axial force of the roots decreased with an increase in buried depth,whereas shear stress at root-soil interface initially increased and then decreased as burial depths increased.At the same buried depth,both axial force and shear stress of the roots increased with the increase in pullout force.Shear stress and plastic zone of the soil surrounding the root were symmetrically distributed along the root system.Plastic zone was located close to the surface and was caused primarily by tensile failure.In nonvertical pulling,symmetry of shear stress and plastic zone of the soil surrounding the root was disrupted.We observed larger shear stress and plastic zones on the side facing the direction of root deflection.Plastic zone included both shear and tensile failure.Axial force of the root system near the surface decreased as deflection angle of the pullout force increased.When different rainfall infiltration depths had the same vertical pulling force,root axial force decreased with the increase of rainfall infiltration depth and total root displacement increased.During rainfall infiltration,shear stress and plastic zone of the soil surrounding the root were prone to propagating deeper into the soil.These findings provide a foundation for further investigation of soil reinforcement and slope protection mechanisms of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau and similar areas.展开更多
The distribution of the Mountain ranges, Plateau as well as the distribution of continents and oceans on the earth’s surface are the embodies of the structure and heat states of the materials at the deep crust and of...The distribution of the Mountain ranges, Plateau as well as the distribution of continents and oceans on the earth’s surface are the embodies of the structure and heat states of the materials at the deep crust and of the tectonic stress of regions. There should be a prevalent corresponding between terrestrial height and the texture, thermal and stress states of lithosphere. However, there is no a general consensus on what extent different factors affecting the height of a terrain should be up to now, and this is very apparent for the models of plateau uplifting.1\ Debates on the compensatory depth of crustal equilibrium\;Based on a previous equilibrium model, Woollard(1969) set up an equation to show the relation among the crustal thickness ( D \-m), the depth of Mohorovicic discontinuity(M)and height above sea level( H):D \-m=33.2+8.5 H (km). By this equation it is implied that equilibrium compensation has been reached at the depth of Mohorovicic discontinuity for the height of a terrain. As Woollard (1970)described, there is no evidence to show that mass distribution beneath the Mohorovicic discontinuity ever played an important roles in the equilibrium compensation of the crust.展开更多
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j...Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.展开更多
Glacial lakes,intimately linked to glacier termini,are crucial landscape features of the Qinghai-Xizang Plateau(QXP,Qinghai-Tibet Plateau)and the Arctic.Climate warming has accelerated glacier retreat and the rapid ex...Glacial lakes,intimately linked to glacier termini,are crucial landscape features of the Qinghai-Xizang Plateau(QXP,Qinghai-Tibet Plateau)and the Arctic.Climate warming has accelerated glacier retreat and the rapid expansion of glacial lakes in both regions.Despite being typically considered harsh environments,these lakes serve as vital reservoirs for microbial biodiversity and carbon metabolism.In the face of climate change,glacial lake ecosystems over the QXP and the Arctic are undergoing unprecedentedtransformations.Thisopinioneditorial highlights the significance of conducting research and establishing long-term monitoring programs focused on microbial carbon metabolism in these glacial lakes.展开更多
The uplift of the QinghaiXizang(Tibet) Plateau happened indifferent crustal movements and different time from those of the collision of Asia continent with the allochthonous India crustobody, and the uplift occurred v...The uplift of the QinghaiXizang(Tibet) Plateau happened indifferent crustal movements and different time from those of the collision of Asia continent with the allochthonous India crustobody, and the uplift occurred very long after the finish of the collision. According to its temporal evolution, the uplift happened in another active stage of the mantle creep flow after the active stage resulting in the collision and the interruption of the 140Ma′s quiet stage. On the basis of the dynamic analysis, the uplift resulted from the multiple compressing stresses in the reactivation stage after weakening of the colliding stress and the following compressing stress, and after the interruption of the stable stage dominating the vertical movements and represented by formation of the universal QinghaiXizang(Tibet) ancient platform. It was the production of another stress field existing in another crustobody evolution stage and growth age. In the light of the nature of the orogeny, the uplift was caused by the intracontinental Diwa (geodepression)type orogeny after converging connection of the Central Asia Crustobody and the India crustbody which immediately became a part of the Asia continent, and hence after the substitution for the colliding stress and the following compressing stress by the platformtype crustal movements.展开更多
The uplift of the Qinghai-Xizang (Tibet) Plateau happened in a different crustal movementsand different time from those of the collision of Asia continent with the allochthonous India crusto-body, and the uplift occur...The uplift of the Qinghai-Xizang (Tibet) Plateau happened in a different crustal movementsand different time from those of the collision of Asia continent with the allochthonous India crusto-body, and the uplift occurred very long after the finish of the collision. In fact, there are no direct-ly causationic relationships in time and dynamics, as well as in crustobody movement nature be-tween the uplift and collision. According to its temporal evolution, the uplift happened in anotheractive stage of the mantle creep flow after the active stage resulting in the collision and the inter-ruption of the 140 Ma’s quiet stage-particularly noticeably after this interruption of quiet stage-resulting in the universal Qinghai-Xizang (Tibet) ancient platform. On the basis of the dynamicanalysis, the uplift resulted from the multiple compressing stresses in the reactivation stage afterweakening of the colliding stress and the following compressing stress, and after the interruptionof the stable stage dominating the vertical movements and represented by fomation of the universalQinghai-Xizang (Tibet) ancient platform. It was the production of another stress field existing inanother crustobody evolution stage and growth age. In the light of the nature of the orogeny, theuplift was caused by the intracontinental diwa (geodepression)-type orogeny after converging con-nection of the Centra1 Asia Crustobody and the India Crustobody.Because of the big temporal difference between the uplift and collision events, the so-calleddouble-crust hypothesis of the Qinghai-Xizang (Tibet) Plateau may not be realistic.展开更多
Comprehensive studies on the basis of pollen records from lake cores at 30 sites in the Qinghai-Xizang Plateau have been used to reconstruct temporal-spatial distributions of Holocene vegetations. Before the, Holocene...Comprehensive studies on the basis of pollen records from lake cores at 30 sites in the Qinghai-Xizang Plateau have been used to reconstruct temporal-spatial distributions of Holocene vegetations. Before the, Holocene (prior to 12.0 ka BP) desert steppe vegetation was developed from the, east to the west in the most parts of the Plateau, with a few exceptions in the extreme southeastern appeared. During the early Holocene ( 12.0 - 9.0 ka BP) deciduous broad-leaved forest/conifer and broad-leaved deciduous mixed forest were distributed in the east of Plateau (104degrees - 98degrees E). Meadows or shrub, meadow appeared in the middle of tire Plateau (98degrees - 92degrees E). Farther west to about 80degrees E, a steppe landscape was present. During the middle Holocene (9.0 - 3.2 ka BP), the palaeovegetations were sequentially conifer and broad-leaved deciduous mixed forest and sclerophyllous broad-leaved forest (104degrees - 98degrees E) - conifer and broad-leaved deciduous mixed forest (98degrees - 94degrees E) - shrub meadow (94degrees - 92degrees E) - steppe (92degrees - 80degrees E). During the late Holocene (after 3.2 ka BP), the palaeovegetations were sequentially sclerophyllous broad-leaved forest - conifer and broad-leaved deciduous mixed forest - meadow - steppe - desert from east to west of the Plateau.展开更多
A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The ...A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similarto-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.展开更多
Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has re...Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.展开更多
Through a comprehensive study of magnetostratigraphy and sedimentology of several basins in the northeastern Tibetan Plateau,we reveal that the study area mainly experienced six tectonic uplift stages at approximately...Through a comprehensive study of magnetostratigraphy and sedimentology of several basins in the northeastern Tibetan Plateau,we reveal that the study area mainly experienced six tectonic uplift stages at approximately 52 Ma,34-30 Ma,24-20 Ma,16-12 Ma,8-6 Ma,and 3.6-2.6 Ma.Comprehensive analyses of pollen assemblages from the Qaidam,Linxia,Xining,and West Jiuquan Basins show that the northeastern Tibetan Plateau has undergone six major changes in vegetation types and climate:50-40 Ma for the warm-humid forest vegetation,40-23 Ma for the warm-arid and temperate-arid forest steppe vegetation,23-18.6 Ma for the warm-humid and temperate-humid forest vegetation,18.6-8.5 Ma for the warm-humid and cool-humid forest steppe vegetation,8.6-5 Ma for the temperate sub-humid savanna steppe vegetation,and 5-1.8 Ma for the cold-arid steppe vegetation.Comprehensive comparisons of tectonic uplift events inferred from sedimentary records,climatic changes inferred from pollen,and global climate changes show that in the northeastern Tibetan Plateau the climate in the Paleogene at low altitude was mainly controlled by the global climate change,while that in the Neogene interval with high altitude landscapes of mountains and basins is more controlled by altitude and morphology.展开更多
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and ...We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and iithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan-Garze and Gangdise belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai-Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdise--Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan-Garze, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining-Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18-13 Ma, and north-south fault basins formed in southern Tibet ca. 13-10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil-Qiangtang, Tarim, and Qaidam. The continuous uplift and intensive taphrogeny in the plateau divided the original large basin into small basins, deposition of lacustrine facies decreased considerably, and boulderstone accumulated, indicating a response to the overall uplift of the plateau. Here, we discuss the evolution of tectonic lithofacies paleogeography in Cenozoic and its response to the tectonic uplift of the Qinghai-Tibet Plateau in relation to the above characteristics. We have recognized five major uplift events, which occurred during 58-53 Ma, 45-30 Ma, 25-20 Ma, 13-7 Ma, and since 5 Ma. The results presented here indicate that the paleogeomorphic configurations of the Qinghai-Tibet Plateau turned over during the late Miocene, with high elevations in the east during the pre-Miocene switching to high contours in the west at the end of Miocene.展开更多
Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data,...Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.展开更多
Located in the northern margin of the Qinghai—Tibet Plateau, the Longshoushan Mt. is a small block between Qinghai—Tibet Landmass and Alashan Landmass.Traditional tectonic viewpoint does not consider that the Longsh...Located in the northern margin of the Qinghai—Tibet Plateau, the Longshoushan Mt. is a small block between Qinghai—Tibet Landmass and Alashan Landmass.Traditional tectonic viewpoint does not consider that the Longshoushan Mt. is a single tectonic block. It is quite evident that there is only a hazy idea about the Longshoushan block. Though there is a very complex tectonic region between Qinghai—Tibet Landmass and Alashan Landmass, the Longshoushan block in the region shows unique tectonic landforms, deep structures and uplift mechanisms. Researching into the relationship between the Longshoushan block and the Qinghai—Tibet and Alashan Landmasses will contribute to the realization of boundary and orogenic belt on the northern margin of the Qinghai—Tibet block. It is a very important scientific subject.The Longshoushan Mt., longer than 150km in NWW direction and wider than 10km, is located on the northern side of Hexi corridor(100 5°~102 5°E,38 5°~39 3°N). It extends from the northwest of Zhangye to Hexibu, and from the south of Chaoshui basin to the north of Minle basin. From west to east, there are the highest peak, Dongdashan Mt.(3616m), the second peak, Dufengding(2937m) and Qianshan peak(2827m), height of the mountains is getting lower and lower, mean height above sea level is over 2000m, and relative height difference is about 1000m. The Longshoushan Mt. provides a natural defence for stopping the southward migration of sandstorm in the Hexi corridor, and forms a topographic step zone from the Alashan Plateau to the Qinghai—Tibet Plateau. In the Longshoushan area, developed landforms, such as planation surface, table\|land, terrace land, are general characters of all geomorphic units. It is shown that the Longshoushan Mt. is a intermittently uplifted block. An astonishingly similar of geometric patterns of Taohualashan Mt. and Hongshihu basin is very interesting natural landscape in the area. It is suggested that Taohualashan Mt. broke away from Hongshihu Basin in secular tectonic movement. The viewpoint is supported by major formation, lithofacies, limitation and style of active faulting. The Longshoushan block consists of two major active fault zones (the northern Longshoushan fault zone and the southern Longshoushan fault zone), the active Pingshanhu—Hongshihu fault basin belt and Taohualashan—Xieposhan tectonic uplift belt. In addition, there are the NNW\|trending West Polamading fault, NWW\|trending Maohudong fault trough, NNE\|trending Daxiahe rift valley and others on the block. the activity and formation style of these structures indicate that the block is acted not only by compressive stress, but also by tensile stress. The northern Longshoushan and southern Longshoushan fault zones are closely related to formation and evolution of the Longshoushan block, the two zones are active fault zones since late Pleistocene and boundary fault zones of the block. The genesis and activity style of the Pingshanhu\|Hongshihu basin are similar to the continental rift, which may be due to the mantle uplift.展开更多
The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study show...The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study shows that the very thick fluvio-lacustrine strata in the basin are 5.89- 0.78 Ma old and that their deposition persisted for 5.11 Ma, i.e. starting at the end of the Miocene and ending at the end of the early Pleistocene, with the Quaternary glacial stage starting in the area no later than 1.58 Ma. Analysis of the sedimentary environment indicates that the Zanda basin on the southern Qinghai-Tibet Plateau began uplift at -5.89 Ma, later than the northern Qinghai-Tibet Plateau. Presence of gravel beds in the Guge and Qangze Formations reflects that strong uplift took place at -5.15 and -2.71 Ma, with the uplift peaking at -2.71 Ma.展开更多
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f...Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).展开更多
Multi-stage uplift of the Tibetan Plateau during the Cenozoic implies a complex geodynamic process.In this paper,we review main geodynamic models for the uplift of the plateau,and,in particular,analyze the spatio-temp...Multi-stage uplift of the Tibetan Plateau during the Cenozoic implies a complex geodynamic process.In this paper,we review main geodynamic models for the uplift of the plateau,and,in particular,analyze the spatio-temporal framework of the Cenozoic deformation structures,which are closely related to the deep geodynamic mechanism for the plateau uplift.From this perspective,significant change of the deformation regime over the Tibetan Plateau occurred by the middle-late Miocene,while thrust and thrust-folding system under NS compression was succeded by extension or stress-relaxation.Meanwhile,a series of large-scale strike-slip faults commenced or was kinemtically reversed.Based on a systematic synthesis of the structure deformation,magmatism,geomorphological process and geophysical exploration,we propose a periodical model of alternating crustal compression and extension for episodic uplift of the Tibetan Plateau.展开更多
The Yalong River is an important river that runs across the abruptly changing terrain of the SE Tibetan Plateau. The terraces and Quaternary sediments in its valleys preserve the information of tectonic uplift, climat...The Yalong River is an important river that runs across the abruptly changing terrain of the SE Tibetan Plateau. The terraces and Quaternary sediments in its valleys preserve the information of tectonic uplift, climate changes, and landform evolution since the Middle Pleistocene. Based on geomorphological, sedimentological, and chronological investigations, 6-8 terraces are identified in the lower reaches of Yalong catchment and its tributary--the Anning River. The electron spin resonance (ESR) or optically stimulated luminescence (OSL) data on the alluvial sediments in the upper portion of terraces indicate that they formed in 1.10, 0.90, 0.72, 0.06-0.04, 0.03-0.02, and 0.01 Ma. Tectonic uplift and the climatic cycle controlled the formation of the Yalong River terraces. The former dominated the dissection depths and incision rates, whereas the latter controlled the transformation between accumulation, which developed during the glacial period, and incision, which developed during the glacial-interglacial transition. The Yalong downstream incised rapidly from 1.10 to 0.72 Ma and rapidly from 0.06 Ma until the present; the terraces developed during these two periods. The incision rates in space during the two periods indicate the uplifting extent of the Jinpingshan area, which decreases toward the east and the south. The results reveal two rapidly uplifting stages in the SE Tibetan Plateau, including an accelerated uplifting since 0.06 Ma. Since the Middle Pleistocene, the tectonic uplift of the SE and NE parts of the Tibetan Plateau is synchronous, according to the same development stages of the river terraces of the Yalong downstream and the Yellow River in the Lanzhou area of the NE Tibetan Plateau. The difference in the horizontal displacement between the Xianshuihe Fault and the Anninghe Fault bend resulted in the rapid uplift of the Jinpingshan area. The incision rate for the spatial distribution of the Yalong downstream is the geomorphologicai response of crustal shortening and uplift differences in the SE margin block of the Tibetan Plateau. The southeastward diffusion process of the Tibetan Plateau was recorded.展开更多
The relations between δ18O and temperature on the different time scales were analysed,according to the data from Tuotuohe (34°13’N, 96°25’E; 4533 m a. s. l. ), Delingha (37°22’N,97°22’E; 2981 ...The relations between δ18O and temperature on the different time scales were analysed,according to the data from Tuotuohe (34°13’N, 96°25’E; 4533 m a. s. l. ), Delingha (37°22’N,97°22’E; 2981 m a. s. l. ) and Xining (36°37’N, 101°46’E; 2261 m a. s. l. ) in the Qnghai-Xizang Plateau. The results show that the significance of d δ18O/dT on different time scales are different.The d δ18O/dT on the synoptic scale reflects the interdependent relation between δ18O and temperature in the short-term synoptic scale process; the d δ18O/d T on the seasonal scale reflects the relation between them whithin a year; and the d δ18O/d T on the climatic scale reflects the relation between them in the long-term climatic change. The calculated d δ18O/dT on climatic scale is very close to the theoretical values on the condition of advection transport for Tuotuohe Station. However, there are great differences between the calculated and the theoretical values for Delingha and Xining stations.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.42025301,41730213 and 41890831)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0702)+2 种基金Hong Kong RGC GRF(Grant No.17307918)HKU Internal Grants for Member of Chinese Academy of Sciences(Grant No.102009906)for Distinguished Research Achievement Award(Grant No.102010100)。
文摘Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.
基金funding from the National Natural Science Foundation of China (72303086)the Leading Scientist Project of Qinghai Province, China (2023-NK-147)+1 种基金the Consulting Project of Chinese Academy of Engineering (2023-XY-28,2022-XY-139)the Fundamental Research Funds for the Central Universities, China (lzujbky-2022-sp13)
文摘Formal credit is critical in agricultural production,allowing more expenditure and productive input,thereby improving farmers'welfare.In pastoral China,formal financial institutions are gradually increasing.However,a limited understanding remains of how formal credit affects herders'household expenses.Based on a survey of 544 herders from the Qinghai-Xizang Plateau of China,this study adopted the propensity score matching approach to identify the effect of formal credit on herders'total household expenses,daily expenses,and productive expenses.The results found that average age,grassland mortgage,and other variables significantly affected herders'participation in formal credit.Formal credit could significantly improve household expenses,especially productive expenses.A heterogeneity analysis showed that formal credit had a greater impact on the household total expense for those at higher levels of wealth;however,it significantly affected the productive expense of herders at lower wealth levels.Moreover,the mediating effect indicated that formal credit could affect herders'household income,thus influencing their household expenses.Finally,this study suggests that policies should improve herders'accessibility to formal credit.
基金funded by the National Natural Science Foundation of China (42002283)
文摘Characteristics of root pullout resistance determine the capacity to withstand uprooting and the slope protection ability of plants.However,mechanism underlying the uprooting of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau,China remains unclear.In this study,a common taproot-type shrub,Caragana korshinskii Kom.,in northeastern Qinghai-Xizang Plateau was selected as the research material.Mechanism of root-soil interaction of vertical root of C.korshinskii was investigated via a combination of a single-root pullout test and numerical simulation analysis.The results indicated that,when pulling vertically,axial force of the roots decreased with an increase in buried depth,whereas shear stress at root-soil interface initially increased and then decreased as burial depths increased.At the same buried depth,both axial force and shear stress of the roots increased with the increase in pullout force.Shear stress and plastic zone of the soil surrounding the root were symmetrically distributed along the root system.Plastic zone was located close to the surface and was caused primarily by tensile failure.In nonvertical pulling,symmetry of shear stress and plastic zone of the soil surrounding the root was disrupted.We observed larger shear stress and plastic zones on the side facing the direction of root deflection.Plastic zone included both shear and tensile failure.Axial force of the root system near the surface decreased as deflection angle of the pullout force increased.When different rainfall infiltration depths had the same vertical pulling force,root axial force decreased with the increase of rainfall infiltration depth and total root displacement increased.During rainfall infiltration,shear stress and plastic zone of the soil surrounding the root were prone to propagating deeper into the soil.These findings provide a foundation for further investigation of soil reinforcement and slope protection mechanisms of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau and similar areas.
文摘The distribution of the Mountain ranges, Plateau as well as the distribution of continents and oceans on the earth’s surface are the embodies of the structure and heat states of the materials at the deep crust and of the tectonic stress of regions. There should be a prevalent corresponding between terrestrial height and the texture, thermal and stress states of lithosphere. However, there is no a general consensus on what extent different factors affecting the height of a terrain should be up to now, and this is very apparent for the models of plateau uplifting.1\ Debates on the compensatory depth of crustal equilibrium\;Based on a previous equilibrium model, Woollard(1969) set up an equation to show the relation among the crustal thickness ( D \-m), the depth of Mohorovicic discontinuity(M)and height above sea level( H):D \-m=33.2+8.5 H (km). By this equation it is implied that equilibrium compensation has been reached at the depth of Mohorovicic discontinuity for the height of a terrain. As Woollard (1970)described, there is no evidence to show that mass distribution beneath the Mohorovicic discontinuity ever played an important roles in the equilibrium compensation of the crust.
基金supported by the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0306)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32)the National Natural Science Foundation of China(No.42174069).
文摘Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.
基金supported by Key Collaborative Research Program of the Alliance of International Science Organizations(Grant no.ANSO-CR-KP-2021-04)the Key Program of National Natural Science Foundation of China(Grant no.42330410)。
文摘Glacial lakes,intimately linked to glacier termini,are crucial landscape features of the Qinghai-Xizang Plateau(QXP,Qinghai-Tibet Plateau)and the Arctic.Climate warming has accelerated glacier retreat and the rapid expansion of glacial lakes in both regions.Despite being typically considered harsh environments,these lakes serve as vital reservoirs for microbial biodiversity and carbon metabolism.In the face of climate change,glacial lake ecosystems over the QXP and the Arctic are undergoing unprecedentedtransformations.Thisopinioneditorial highlights the significance of conducting research and establishing long-term monitoring programs focused on microbial carbon metabolism in these glacial lakes.
文摘The uplift of the QinghaiXizang(Tibet) Plateau happened indifferent crustal movements and different time from those of the collision of Asia continent with the allochthonous India crustobody, and the uplift occurred very long after the finish of the collision. According to its temporal evolution, the uplift happened in another active stage of the mantle creep flow after the active stage resulting in the collision and the interruption of the 140Ma′s quiet stage. On the basis of the dynamic analysis, the uplift resulted from the multiple compressing stresses in the reactivation stage after weakening of the colliding stress and the following compressing stress, and after the interruption of the stable stage dominating the vertical movements and represented by formation of the universal QinghaiXizang(Tibet) ancient platform. It was the production of another stress field existing in another crustobody evolution stage and growth age. In the light of the nature of the orogeny, the uplift was caused by the intracontinental Diwa (geodepression)type orogeny after converging connection of the Central Asia Crustobody and the India crustbody which immediately became a part of the Asia continent, and hence after the substitution for the colliding stress and the following compressing stress by the platformtype crustal movements.
文摘The uplift of the Qinghai-Xizang (Tibet) Plateau happened in a different crustal movementsand different time from those of the collision of Asia continent with the allochthonous India crusto-body, and the uplift occurred very long after the finish of the collision. In fact, there are no direct-ly causationic relationships in time and dynamics, as well as in crustobody movement nature be-tween the uplift and collision. According to its temporal evolution, the uplift happened in anotheractive stage of the mantle creep flow after the active stage resulting in the collision and the inter-ruption of the 140 Ma’s quiet stage-particularly noticeably after this interruption of quiet stage-resulting in the universal Qinghai-Xizang (Tibet) ancient platform. On the basis of the dynamicanalysis, the uplift resulted from the multiple compressing stresses in the reactivation stage afterweakening of the colliding stress and the following compressing stress, and after the interruptionof the stable stage dominating the vertical movements and represented by fomation of the universalQinghai-Xizang (Tibet) ancient platform. It was the production of another stress field existing inanother crustobody evolution stage and growth age. In the light of the nature of the orogeny, theuplift was caused by the intracontinental diwa (geodepression)-type orogeny after converging con-nection of the Centra1 Asia Crustobody and the India Crustobody.Because of the big temporal difference between the uplift and collision events, the so-calleddouble-crust hypothesis of the Qinghai-Xizang (Tibet) Plateau may not be realistic.
文摘Comprehensive studies on the basis of pollen records from lake cores at 30 sites in the Qinghai-Xizang Plateau have been used to reconstruct temporal-spatial distributions of Holocene vegetations. Before the, Holocene (prior to 12.0 ka BP) desert steppe vegetation was developed from the, east to the west in the most parts of the Plateau, with a few exceptions in the extreme southeastern appeared. During the early Holocene ( 12.0 - 9.0 ka BP) deciduous broad-leaved forest/conifer and broad-leaved deciduous mixed forest were distributed in the east of Plateau (104degrees - 98degrees E). Meadows or shrub, meadow appeared in the middle of tire Plateau (98degrees - 92degrees E). Farther west to about 80degrees E, a steppe landscape was present. During the middle Holocene (9.0 - 3.2 ka BP), the palaeovegetations were sequentially conifer and broad-leaved deciduous mixed forest and sclerophyllous broad-leaved forest (104degrees - 98degrees E) - conifer and broad-leaved deciduous mixed forest (98degrees - 94degrees E) - shrub meadow (94degrees - 92degrees E) - steppe (92degrees - 80degrees E). During the late Holocene (after 3.2 ka BP), the palaeovegetations were sequentially sclerophyllous broad-leaved forest - conifer and broad-leaved deciduous mixed forest - meadow - steppe - desert from east to west of the Plateau.
基金the Chinese Academy of Sciences under Grant Nos. KZCX2-YW-205 and KZCX3-SW-229the National NaturalScience Foundation of China under Grant Nos. 40505017and 40775052.
文摘A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similarto-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.
基金co-supposed by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-EW-ON112)Open Fund of Key Laboratory of Petroleum Resources Research of the Chinese Academy of Sciences(No.KFJJ2010-07)
文摘Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.
基金supported by Foundation of Geological Survey of China (no. 1212011121261)the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (no. GBL11307)
文摘Through a comprehensive study of magnetostratigraphy and sedimentology of several basins in the northeastern Tibetan Plateau,we reveal that the study area mainly experienced six tectonic uplift stages at approximately 52 Ma,34-30 Ma,24-20 Ma,16-12 Ma,8-6 Ma,and 3.6-2.6 Ma.Comprehensive analyses of pollen assemblages from the Qaidam,Linxia,Xining,and West Jiuquan Basins show that the northeastern Tibetan Plateau has undergone six major changes in vegetation types and climate:50-40 Ma for the warm-humid forest vegetation,40-23 Ma for the warm-arid and temperate-arid forest steppe vegetation,23-18.6 Ma for the warm-humid and temperate-humid forest vegetation,18.6-8.5 Ma for the warm-humid and cool-humid forest steppe vegetation,8.6-5 Ma for the temperate sub-humid savanna steppe vegetation,and 5-1.8 Ma for the cold-arid steppe vegetation.Comprehensive comparisons of tectonic uplift events inferred from sedimentary records,climatic changes inferred from pollen,and global climate changes show that in the northeastern Tibetan Plateau the climate in the Paleogene at low altitude was mainly controlled by the global climate change,while that in the Neogene interval with high altitude landscapes of mountains and basins is more controlled by altitude and morphology.
基金supported by the Foundation of Geological Survey of China (Nos.1212011121261,1212010733802)the National Natural Science Foundation (No.40921062)
文摘We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and iithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan-Garze and Gangdise belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai-Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdise--Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan-Garze, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining-Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18-13 Ma, and north-south fault basins formed in southern Tibet ca. 13-10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil-Qiangtang, Tarim, and Qaidam. The continuous uplift and intensive taphrogeny in the plateau divided the original large basin into small basins, deposition of lacustrine facies decreased considerably, and boulderstone accumulated, indicating a response to the overall uplift of the plateau. Here, we discuss the evolution of tectonic lithofacies paleogeography in Cenozoic and its response to the tectonic uplift of the Qinghai-Tibet Plateau in relation to the above characteristics. We have recognized five major uplift events, which occurred during 58-53 Ma, 45-30 Ma, 25-20 Ma, 13-7 Ma, and since 5 Ma. The results presented here indicate that the paleogeomorphic configurations of the Qinghai-Tibet Plateau turned over during the late Miocene, with high elevations in the east during the pre-Miocene switching to high contours in the west at the end of Miocene.
基金the auspices of the National!(G1998040800)CAS's Key Project for Basic Research on the Tibetan Plateau! (KZ951-A1-204, KZ95T-
文摘Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.
文摘Located in the northern margin of the Qinghai—Tibet Plateau, the Longshoushan Mt. is a small block between Qinghai—Tibet Landmass and Alashan Landmass.Traditional tectonic viewpoint does not consider that the Longshoushan Mt. is a single tectonic block. It is quite evident that there is only a hazy idea about the Longshoushan block. Though there is a very complex tectonic region between Qinghai—Tibet Landmass and Alashan Landmass, the Longshoushan block in the region shows unique tectonic landforms, deep structures and uplift mechanisms. Researching into the relationship between the Longshoushan block and the Qinghai—Tibet and Alashan Landmasses will contribute to the realization of boundary and orogenic belt on the northern margin of the Qinghai—Tibet block. It is a very important scientific subject.The Longshoushan Mt., longer than 150km in NWW direction and wider than 10km, is located on the northern side of Hexi corridor(100 5°~102 5°E,38 5°~39 3°N). It extends from the northwest of Zhangye to Hexibu, and from the south of Chaoshui basin to the north of Minle basin. From west to east, there are the highest peak, Dongdashan Mt.(3616m), the second peak, Dufengding(2937m) and Qianshan peak(2827m), height of the mountains is getting lower and lower, mean height above sea level is over 2000m, and relative height difference is about 1000m. The Longshoushan Mt. provides a natural defence for stopping the southward migration of sandstorm in the Hexi corridor, and forms a topographic step zone from the Alashan Plateau to the Qinghai—Tibet Plateau. In the Longshoushan area, developed landforms, such as planation surface, table\|land, terrace land, are general characters of all geomorphic units. It is shown that the Longshoushan Mt. is a intermittently uplifted block. An astonishingly similar of geometric patterns of Taohualashan Mt. and Hongshihu basin is very interesting natural landscape in the area. It is suggested that Taohualashan Mt. broke away from Hongshihu Basin in secular tectonic movement. The viewpoint is supported by major formation, lithofacies, limitation and style of active faulting. The Longshoushan block consists of two major active fault zones (the northern Longshoushan fault zone and the southern Longshoushan fault zone), the active Pingshanhu—Hongshihu fault basin belt and Taohualashan—Xieposhan tectonic uplift belt. In addition, there are the NNW\|trending West Polamading fault, NWW\|trending Maohudong fault trough, NNE\|trending Daxiahe rift valley and others on the block. the activity and formation style of these structures indicate that the block is acted not only by compressive stress, but also by tensile stress. The northern Longshoushan and southern Longshoushan fault zones are closely related to formation and evolution of the Longshoushan block, the two zones are active fault zones since late Pleistocene and boundary fault zones of the block. The genesis and activity style of the Pingshanhu\|Hongshihu basin are similar to the continental rift, which may be due to the mantle uplift.
基金This study was supported jointly by the National Natural Science Foundation grant 40572134 the Land and Resources Survey project "Environmental Evolution Sequence of Tertiary Major Paleolakes on the Qinghai- Tibet Plateau" (Ke[2003]007-02).
文摘The characteristics of Late Cenozoic tectonic uplift of the southern margin of the Qinghai- Tibet Plateau may be inferred from fluvio-lacustrine strata in the Zanda basin, Ngari, Tibet. Magnetostratigraphic study shows that the very thick fluvio-lacustrine strata in the basin are 5.89- 0.78 Ma old and that their deposition persisted for 5.11 Ma, i.e. starting at the end of the Miocene and ending at the end of the early Pleistocene, with the Quaternary glacial stage starting in the area no later than 1.58 Ma. Analysis of the sedimentary environment indicates that the Zanda basin on the southern Qinghai-Tibet Plateau began uplift at -5.89 Ma, later than the northern Qinghai-Tibet Plateau. Presence of gravel beds in the Guge and Qangze Formations reflects that strong uplift took place at -5.15 and -2.71 Ma, with the uplift peaking at -2.71 Ma.
文摘Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).
基金supported by the National Special Project on the Tibetan Plateau of the China Geological Survey (1212011121261, 1212010610103)the National Natural Science Foundation of China (Nos. 41202144, 40902060)
文摘Multi-stage uplift of the Tibetan Plateau during the Cenozoic implies a complex geodynamic process.In this paper,we review main geodynamic models for the uplift of the plateau,and,in particular,analyze the spatio-temporal framework of the Cenozoic deformation structures,which are closely related to the deep geodynamic mechanism for the plateau uplift.From this perspective,significant change of the deformation regime over the Tibetan Plateau occurred by the middle-late Miocene,while thrust and thrust-folding system under NS compression was succeded by extension or stress-relaxation.Meanwhile,a series of large-scale strike-slip faults commenced or was kinemtically reversed.Based on a systematic synthesis of the structure deformation,magmatism,geomorphological process and geophysical exploration,we propose a periodical model of alternating crustal compression and extension for episodic uplift of the Tibetan Plateau.
基金supported by the Project of China Geological Survey (grant nos.1212011120071,201211077-3 and 1212011120182)
文摘The Yalong River is an important river that runs across the abruptly changing terrain of the SE Tibetan Plateau. The terraces and Quaternary sediments in its valleys preserve the information of tectonic uplift, climate changes, and landform evolution since the Middle Pleistocene. Based on geomorphological, sedimentological, and chronological investigations, 6-8 terraces are identified in the lower reaches of Yalong catchment and its tributary--the Anning River. The electron spin resonance (ESR) or optically stimulated luminescence (OSL) data on the alluvial sediments in the upper portion of terraces indicate that they formed in 1.10, 0.90, 0.72, 0.06-0.04, 0.03-0.02, and 0.01 Ma. Tectonic uplift and the climatic cycle controlled the formation of the Yalong River terraces. The former dominated the dissection depths and incision rates, whereas the latter controlled the transformation between accumulation, which developed during the glacial period, and incision, which developed during the glacial-interglacial transition. The Yalong downstream incised rapidly from 1.10 to 0.72 Ma and rapidly from 0.06 Ma until the present; the terraces developed during these two periods. The incision rates in space during the two periods indicate the uplifting extent of the Jinpingshan area, which decreases toward the east and the south. The results reveal two rapidly uplifting stages in the SE Tibetan Plateau, including an accelerated uplifting since 0.06 Ma. Since the Middle Pleistocene, the tectonic uplift of the SE and NE parts of the Tibetan Plateau is synchronous, according to the same development stages of the river terraces of the Yalong downstream and the Yellow River in the Lanzhou area of the NE Tibetan Plateau. The difference in the horizontal displacement between the Xianshuihe Fault and the Anninghe Fault bend resulted in the rapid uplift of the Jinpingshan area. The incision rate for the spatial distribution of the Yalong downstream is the geomorphologicai response of crustal shortening and uplift differences in the SE margin block of the Tibetan Plateau. The southeastward diffusion process of the Tibetan Plateau was recorded.
文摘The relations between δ18O and temperature on the different time scales were analysed,according to the data from Tuotuohe (34°13’N, 96°25’E; 4533 m a. s. l. ), Delingha (37°22’N,97°22’E; 2981 m a. s. l. ) and Xining (36°37’N, 101°46’E; 2261 m a. s. l. ) in the Qnghai-Xizang Plateau. The results show that the significance of d δ18O/dT on different time scales are different.The d δ18O/dT on the synoptic scale reflects the interdependent relation between δ18O and temperature in the short-term synoptic scale process; the d δ18O/d T on the seasonal scale reflects the relation between them whithin a year; and the d δ18O/d T on the climatic scale reflects the relation between them in the long-term climatic change. The calculated d δ18O/dT on climatic scale is very close to the theoretical values on the condition of advection transport for Tuotuohe Station. However, there are great differences between the calculated and the theoretical values for Delingha and Xining stations.