Given a compact Hausdorff space X, U(X) denotes the compact Hausdorff space of all the upper semicontinuous functions from X to the unit interval with the dual lim inf topology. Then U is an endofunctor o...Given a compact Hausdorff space X, U(X) denotes the compact Hausdorff space of all the upper semicontinuous functions from X to the unit interval with the dual lim inf topology. Then U is an endofunctor on compact Hausdorff space. It is proved in this note that this functor preserves inverse limits.展开更多
In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an a...In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.展开更多
In this paper,we develop the criterion on the upper semi-continuity of random attractors by a weak-to-weak limit replacing the usual norm-to-norm limit.As an application,we obtain the convergence of random attractors ...In this paper,we develop the criterion on the upper semi-continuity of random attractors by a weak-to-weak limit replacing the usual norm-to-norm limit.As an application,we obtain the convergence of random attractors for non-autonomous stochastic reactiondiffusion equations on unbounded domains,when the density of stochastic noises approaches zero.The weak convergence of solutions is proved by means of Alaoglu weak compactness theorem.A differentiability condition on nonlinearity is omitted,which implies that the existence conditions for random attractors are sufficient to ensure their upper semi-continuity.These results greatly strengthen the upper semi-continuity notion that has been developed in the literature.展开更多
The purpose of this paper is to introduce the notions of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying c...The purpose of this paper is to introduce the notions of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework of bitopological spaces. Some new characterizations of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions will be investigated and several fundamental properties will be obtained.展开更多
In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R...This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R, respectively. It is showed that the global attractor A is upper semicontinuity at 0 with respect to the sets {A(L)} in some sense.展开更多
An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an...An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.展开更多
Let X and Y be metrizable topological linear spaces. In this paper, the following results are proved. (1) If X and Y are complete, g: X→Y is a point closed u. s. c.,and symmetric process with F(X)=Y,then either F(X) ...Let X and Y be metrizable topological linear spaces. In this paper, the following results are proved. (1) If X and Y are complete, g: X→Y is a point closed u. s. c.,and symmetric process with F(X)=Y,then either F(X) is meager in Y,or else F is an open muRifunction with F(X)=Y. (2) If X is complete, and F: X→Y is a process with a subclosed graph, then F is I s. c.. We also discuss topological multi-homomorphisms between topological linear spaces.展开更多
In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variationa...In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variational inequality problems and generalized vector variational-like inequality problems as special cases. We use the maximal element theorem with an escaping sequence to prove the existence results of a solution for generalized vector quasi-variational-like inequalities without any monotonicity conditions in the setting of locally convex topological vector space.展开更多
The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov en...The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.展开更多
In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions a...In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions are proved. At last, the existence of global attractors and its upper semicontinuous property are discussed.展开更多
In this paper, we obtain some other properties of the majorly efficient points and solutions of the multiobjective optimization presellted in two previous papers of Hu. By decomposing the major cone, which is non-poin...In this paper, we obtain some other properties of the majorly efficient points and solutions of the multiobjective optimization presellted in two previous papers of Hu. By decomposing the major cone, which is non-pointed, non-convex and non-closed into a finite union of disjoint strictly supported pointed convex cones, we discuss the continuous perturbations of the decision space. Several sufficient conditions for the continuity of the sets of majorly efficiellt points and solutions are given.展开更多
In this paper, two new existence and quasi-variational inequality problems are theorems of solutions to inverse variational proved using the Fan-Knaster-Kuratowski- Mazurkiewicz (KKM) theorem and the Kakutani-Fan-Gl...In this paper, two new existence and quasi-variational inequality problems are theorems of solutions to inverse variational proved using the Fan-Knaster-Kuratowski- Mazurkiewicz (KKM) theorem and the Kakutani-Fan-Glicksberg fixed point theorem. Upper semicontinuity and lower semicontinuity of the solution mapping and the approximate solution mapping to the parametric inverse variational inequality problem are also discussed under some suitable conditions. An application to a road pricing problem is given.展开更多
The properties of generalized convexity are studied in this paper,as well as an existence Theorem of solutions for a type of generalized quasi-variational inequality is then abtained.
It is studied systematically for the level strcture of the kernel and hull on continuous-lattice- calued function.In terms of these results,the level characterixations of induced space are odtained.
In this paper, we first prove some new selection and fixed point theorems in generalized convex spaces. Then, we establish some existence theorems of quasi-equilibrium and generalized quasi-equilibrium without the con...In this paper, we first prove some new selection and fixed point theorems in generalized convex spaces. Then, we establish some existence theorems of quasi-equilibrium and generalized quasi-equilibrium without the conditions of open fibers, by applying our selection and fixed point theorems.展开更多
In this paper, another form of KKM type theorem on generalized convex spaces is obtained and the problems of von Neumann-Fan type sup inf sup inequalities and variational inequalities are discussed for their applicati...In this paper, another form of KKM type theorem on generalized convex spaces is obtained and the problems of von Neumann-Fan type sup inf sup inequalities and variational inequalities are discussed for their applications.The main results improve and generalize the corresponding results in previous papers.展开更多
We define and study the weak drop property for the polar of a closed bounded convex set in a Banach space which is both a generalization of the weak drop property for dual norm in a Banach space and a characterization...We define and study the weak drop property for the polar of a closed bounded convex set in a Banach space which is both a generalization of the weak drop property for dual norm in a Banach space and a characterization of the sub-differential mapping x →(?)p(x) from S(X) into 2S(X) that is norm upper semi-continuous and norm compact-valued.展开更多
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.展开更多
We obtain some theorems for real increasing functions showing that elementary fixed point theory can bring to astonishing results by assuming only a few properties, some of which intrinsically possessed from these fun...We obtain some theorems for real increasing functions showing that elementary fixed point theory can bring to astonishing results by assuming only a few properties, some of which intrinsically possessed from these functions. An application is given for a theorem of quasi-compactness and a known result in posets is also recalled and applied to real intervals.展开更多
文摘Given a compact Hausdorff space X, U(X) denotes the compact Hausdorff space of all the upper semicontinuous functions from X to the unit interval with the dual lim inf topology. Then U is an endofunctor on compact Hausdorff space. It is proved in this note that this functor preserves inverse limits.
文摘In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.
文摘In this paper,we develop the criterion on the upper semi-continuity of random attractors by a weak-to-weak limit replacing the usual norm-to-norm limit.As an application,we obtain the convergence of random attractors for non-autonomous stochastic reactiondiffusion equations on unbounded domains,when the density of stochastic noises approaches zero.The weak convergence of solutions is proved by means of Alaoglu weak compactness theorem.A differentiability condition on nonlinearity is omitted,which implies that the existence conditions for random attractors are sufficient to ensure their upper semi-continuity.These results greatly strengthen the upper semi-continuity notion that has been developed in the literature.
文摘The purpose of this paper is to introduce the notions of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework of bitopological spaces. Some new characterizations of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions will be investigated and several fundamental properties will be obtained.
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
文摘This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R, respectively. It is showed that the global attractor A is upper semicontinuity at 0 with respect to the sets {A(L)} in some sense.
文摘An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.
基金This paper was reported at the 5th National Functional Analysis Conference held at Nanjing in Nov.,1990.
文摘Let X and Y be metrizable topological linear spaces. In this paper, the following results are proved. (1) If X and Y are complete, g: X→Y is a point closed u. s. c.,and symmetric process with F(X)=Y,then either F(X) is meager in Y,or else F is an open muRifunction with F(X)=Y. (2) If X is complete, and F: X→Y is a process with a subclosed graph, then F is I s. c.. We also discuss topological multi-homomorphisms between topological linear spaces.
基金The NSF(60804065) of Chinathe Foundation(11A029,11A028) of China West Normal University+2 种基金the Fundamental Research Funds(13D016) of China West Normal Universitythe Key Project(211163) of Chinese Ministry of EducationSichuan Youth Science and Technology Foundation(2012JQ0032)
文摘In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variational inequality problems and generalized vector variational-like inequality problems as special cases. We use the maximal element theorem with an escaping sequence to prove the existence results of a solution for generalized vector quasi-variational-like inequalities without any monotonicity conditions in the setting of locally convex topological vector space.
基金Project supported by the National Natural Science Foundation of China(No.10771139)the Ph.D. Program of Ministry of Education of China(No.200802700002)+4 种基金the Shanghai Leading Academic Discipline Project(No.S30405)the Innovation Program of Shanghai Municipal Education Commission(No.08ZZ70)the Foundation of Shanghai Talented Persons(No.049)the Leading Academic Discipline Project of Shanghai Normal University(No.DZL707)the Foundation of Shanghai Normal University(No.DYL200803)
文摘The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.
基金National Natural Science Foundation of China ( No. 11031003) Fund of Excellent Young Teachers in Shanghai,China( No.shgcjs008) Initial Fund of Shanghai University of Engineering Science,China( No. A-0501-11-016)
文摘In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions are proved. At last, the existence of global attractors and its upper semicontinuous property are discussed.
文摘In this paper, we obtain some other properties of the majorly efficient points and solutions of the multiobjective optimization presellted in two previous papers of Hu. By decomposing the major cone, which is non-pointed, non-convex and non-closed into a finite union of disjoint strictly supported pointed convex cones, we discuss the continuous perturbations of the decision space. Several sufficient conditions for the continuity of the sets of majorly efficiellt points and solutions are given.
基金Project supported by the National Natural Science Foundation of China(No.11671282)the Joint Foundation of the Ministry of Education of China and China Mobile Communication Corporation(No.MCM20150505)+4 种基金the China Postdoctoral Science Foundation(No.2015T80967)the Applied Basic Project of Sichuan Province(No.2016JY0170)the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices(No.KFJJ201611)the Key Program of Education Department of Sichuan Province(No.16ZA0007)the Fundamental Research Funds for the Central Universities(No.ZYGX2015J098)
文摘In this paper, two new existence and quasi-variational inequality problems are theorems of solutions to inverse variational proved using the Fan-Knaster-Kuratowski- Mazurkiewicz (KKM) theorem and the Kakutani-Fan-Glicksberg fixed point theorem. Upper semicontinuity and lower semicontinuity of the solution mapping and the approximate solution mapping to the parametric inverse variational inequality problem are also discussed under some suitable conditions. An application to a road pricing problem is given.
文摘The properties of generalized convexity are studied in this paper,as well as an existence Theorem of solutions for a type of generalized quasi-variational inequality is then abtained.
文摘It is studied systematically for the level strcture of the kernel and hull on continuous-lattice- calued function.In terms of these results,the level characterixations of induced space are odtained.
基金The NNSF(10571081) of ChinaNSF (KM200710772007) of Beijing Education Department
文摘In this paper, we first prove some new selection and fixed point theorems in generalized convex spaces. Then, we establish some existence theorems of quasi-equilibrium and generalized quasi-equilibrium without the conditions of open fibers, by applying our selection and fixed point theorems.
文摘In this paper, another form of KKM type theorem on generalized convex spaces is obtained and the problems of von Neumann-Fan type sup inf sup inequalities and variational inequalities are discussed for their applications.The main results improve and generalize the corresponding results in previous papers.
文摘We define and study the weak drop property for the polar of a closed bounded convex set in a Banach space which is both a generalization of the weak drop property for dual norm in a Banach space and a characterization of the sub-differential mapping x →(?)p(x) from S(X) into 2S(X) that is norm upper semi-continuous and norm compact-valued.
文摘The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
文摘We obtain some theorems for real increasing functions showing that elementary fixed point theory can bring to astonishing results by assuming only a few properties, some of which intrinsically possessed from these functions. An application is given for a theorem of quasi-compactness and a known result in posets is also recalled and applied to real intervals.