In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec...The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.展开更多
The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) fo...The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.展开更多
Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in ...Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick (generally 〉200 m), and have a high total organic content (TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution (Ro〉1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance (Ro) reaching 1.06%. and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from Tax5 source rocks is 3.14x10^10 t and 1.86x10^10 t, respectively, with a residual amount of 1.28x10^10t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3xs source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3x10s t. Geological resources of shale gas are up to 1.05x10TM t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales.展开更多
The Upper Triassic Xujiahe (须家河) Formation in the Sichuan (四川) Basin, Southwest China is distinctive for the basin-scale sand deposition. This relatively rare sedimentary phenomenon has not been well interpre...The Upper Triassic Xujiahe (须家河) Formation in the Sichuan (四川) Basin, Southwest China is distinctive for the basin-scale sand deposition. This relatively rare sedimentary phenomenon has not been well interpreted. Here we addressed this issue by discussing sedimentary framework and conceptual model. Analysis of sedimentary setting implied that the basin received transgression during the deposition. It had multiple provenance supplies and river networks, as being surrounded by old- lands in multiple directions including the north, east and south. Thus, the basin was generally charac-terized by coastal and widely open and shallow lacustrine deposition during the Late Triassic Xujiahe period. This is similar to the modern well-known Poyang (鄱阳) Lake. Therefore, we investigated the framework and conceptual model of the Sichuan Basin during the Xujiahe period with an analogue to the Poyang Lake. Results show that the conceptual model of the deposition can be divided into transgressive and regressive stages. The first, third and fifth mem- bers of the formation are in transgressive stage and the deposits are dominated by shore and shallow lacustrine mud. In contrast, the deposition is mainly of braided river channel sand deposits during the regressive stage, mainly including the second, fourth and sixth members of the formation. The sand deposited in almost the entire basin because of the lateral migration and forward moving of the cross networks of the braided rivers. The multiple alternations of short and rapid transgression and relatively long regression are beneficial to the basin-scale sand deposition. Thus, the main channel of the braided river and its extensional areas are favorable for the development of hydrocarbon reservoir. This provides practical significance to the reservoir evaluation and exploration. In addition, the results also justify the relatively distinctive sedimentary phenomenon in the study area and may also have im- plications for understanding the large-scale sand deposition elsewhere.展开更多
Mixed carbonate-siliciclastic sedimentation is common in the Upper Permian-Lower Tri-assic in the western Sichuan(四川) basin.The extensional movement was strong in the Late Permian,resulting in differential uplifti...Mixed carbonate-siliciclastic sedimentation is common in the Upper Permian-Lower Tri-assic in the western Sichuan(四川) basin.The extensional movement was strong in the Late Permian,resulting in differential uplifting of fault blocks.During this period,there was an extensive retrogres-sion.The Kangdian(康滇) ancient land progressive uplifted and enlarged,forming the major prove-nance of terrigenous clastics.In Changxingian age,mixed terrigenous-carbonate sedimentation was dis-tributed in the area between Dafeishui(大飞水)-well Dashen(大深)-1-well Shoubao(寿保)-1 and Beichuan(北川)-well Guanji(关基).The terrigenous clastics sourced from Kangdian ancient land input into the relatively shallow water,resulting in an extensive limited platform-mixing tidal flat where moderate-thick laminated grey limestone,thin muddy limestone and purplish red sandy shale were de-posited.The tectonic framework in Feixianguanian(飞仙关) stage was inherited from the Chang-xingian stage.The hybrid sedimentation was limited to the south of Dujiangyan(都江堰)-Xindu(新都).In Jialingjiangian(嘉陵江) stage,the palaeogeographic features were also unchanged and two complete transgression-retrogression cycles also occurred.The mixing tidal flat was distributed to the west of Baoxing(保兴)-Ya'an(雅安)-Hongya(洪雅)-Leshan(乐山),where purplish red sandstone with thin limestone and shale interbeds and grey-dark grey silty mudstone with limestone were deposited.The carbonates in the mixed facies tract have few primary pores preserved and poorly-developed secondary pores due to the relatively high content of terrigenous clastics,strong compaction and weak dissolution.Therefore,they are unfavorable for the development of effective reservoirs.展开更多
Upper Triassic and Middle Jurassic strata of the Xichang Basin in Sichuan Province, southwestern China, yielded important dinosaur ichnofossils. From the Xujiahe Formation of the Yiguojiao tracksite, we report a Late ...Upper Triassic and Middle Jurassic strata of the Xichang Basin in Sichuan Province, southwestern China, yielded important dinosaur ichnofossils. From the Xujiahe Formation of the Yiguojiao tracksite, we report a Late Triassic footprint assemblage in China and the first discovery of diagnostic Triassic sauropodomorph tracks in this region. The tracks share a number of features in common with the ichnogenera Eosauropus(Late Triassic) and Liujianpus(Early Jurassic). The neighboring Bingtu tracksite is stratigraphically younger(Shaximiao Formation, Middle Jurassic) and preserves small tridactyl theropod tracks that represent the first occurrence of the ichnotaxon Carmelopodus in China and Asia. While these tracks are morphologically comparable to those from the Middle Jurassic type locality in North America, the specimens from China show the proximal margin of the digit IV impression in a more cranial position, which may indicate a trackmaker with a relatively short metatarsal IV. In addition to the skeletal record, the Carmelopodus footprints document the presence of small theropods in the dinosaur fauna of the Middle Jurassic Shaximiao Formation.展开更多
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
文摘The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.
基金supported by the Important National Science&Technology Specific Project (2008ZX05002-004)
文摘The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.
基金supported by the National Natural Science Foundation of China(U6212205)the Chinese Postdoctoral Science Foundation(2014M550984)
文摘Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick (generally 〉200 m), and have a high total organic content (TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution (Ro〉1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance (Ro) reaching 1.06%. and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from Tax5 source rocks is 3.14x10^10 t and 1.86x10^10 t, respectively, with a residual amount of 1.28x10^10t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3xs source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3x10s t. Geological resources of shale gas are up to 1.05x10TM t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales.
基金supported by the Major State Basic Research Development Program(No.2012CB 214803)the China's National Science & Technology Special Project (No.2011ZX05004-005-03)+1 种基金the PetroChina Youth Innovation Foundation(No.2011D-5006-0105)the Key Subject Construction Project of Sichuan Province,China(No.SZD0414)
文摘The Upper Triassic Xujiahe (须家河) Formation in the Sichuan (四川) Basin, Southwest China is distinctive for the basin-scale sand deposition. This relatively rare sedimentary phenomenon has not been well interpreted. Here we addressed this issue by discussing sedimentary framework and conceptual model. Analysis of sedimentary setting implied that the basin received transgression during the deposition. It had multiple provenance supplies and river networks, as being surrounded by old- lands in multiple directions including the north, east and south. Thus, the basin was generally charac-terized by coastal and widely open and shallow lacustrine deposition during the Late Triassic Xujiahe period. This is similar to the modern well-known Poyang (鄱阳) Lake. Therefore, we investigated the framework and conceptual model of the Sichuan Basin during the Xujiahe period with an analogue to the Poyang Lake. Results show that the conceptual model of the deposition can be divided into transgressive and regressive stages. The first, third and fifth mem- bers of the formation are in transgressive stage and the deposits are dominated by shore and shallow lacustrine mud. In contrast, the deposition is mainly of braided river channel sand deposits during the regressive stage, mainly including the second, fourth and sixth members of the formation. The sand deposited in almost the entire basin because of the lateral migration and forward moving of the cross networks of the braided rivers. The multiple alternations of short and rapid transgression and relatively long regression are beneficial to the basin-scale sand deposition. Thus, the main channel of the braided river and its extensional areas are favorable for the development of hydrocarbon reservoir. This provides practical significance to the reservoir evaluation and exploration. In addition, the results also justify the relatively distinctive sedimentary phenomenon in the study area and may also have im- plications for understanding the large-scale sand deposition elsewhere.
基金supported by the National Major Basic Research and Development Project (No. 2005CB422100) and the project of SINOPEC
文摘Mixed carbonate-siliciclastic sedimentation is common in the Upper Permian-Lower Tri-assic in the western Sichuan(四川) basin.The extensional movement was strong in the Late Permian,resulting in differential uplifting of fault blocks.During this period,there was an extensive retrogres-sion.The Kangdian(康滇) ancient land progressive uplifted and enlarged,forming the major prove-nance of terrigenous clastics.In Changxingian age,mixed terrigenous-carbonate sedimentation was dis-tributed in the area between Dafeishui(大飞水)-well Dashen(大深)-1-well Shoubao(寿保)-1 and Beichuan(北川)-well Guanji(关基).The terrigenous clastics sourced from Kangdian ancient land input into the relatively shallow water,resulting in an extensive limited platform-mixing tidal flat where moderate-thick laminated grey limestone,thin muddy limestone and purplish red sandy shale were de-posited.The tectonic framework in Feixianguanian(飞仙关) stage was inherited from the Chang-xingian stage.The hybrid sedimentation was limited to the south of Dujiangyan(都江堰)-Xindu(新都).In Jialingjiangian(嘉陵江) stage,the palaeogeographic features were also unchanged and two complete transgression-retrogression cycles also occurred.The mixing tidal flat was distributed to the west of Baoxing(保兴)-Ya'an(雅安)-Hongya(洪雅)-Leshan(乐山),where purplish red sandstone with thin limestone and shale interbeds and grey-dark grey silty mudstone with limestone were deposited.The carbonates in the mixed facies tract have few primary pores preserved and poorly-developed secondary pores due to the relatively high content of terrigenous clastics,strong compaction and weak dissolution.Therefore,they are unfavorable for the development of effective reservoirs.
基金supported by the National Natural Science Foundation of China (Grant No.41772008)the State Key Laboratory of Palaeobiology and Stratigraphy(Nanjing Institute of Geology and Palaeontology, CAS)(Grant No.173127)and the comprehensive geological and mineral survey in Wumeng mountainous area conducted by China Geological Survey (Grant No.121201010000150002)
文摘Upper Triassic and Middle Jurassic strata of the Xichang Basin in Sichuan Province, southwestern China, yielded important dinosaur ichnofossils. From the Xujiahe Formation of the Yiguojiao tracksite, we report a Late Triassic footprint assemblage in China and the first discovery of diagnostic Triassic sauropodomorph tracks in this region. The tracks share a number of features in common with the ichnogenera Eosauropus(Late Triassic) and Liujianpus(Early Jurassic). The neighboring Bingtu tracksite is stratigraphically younger(Shaximiao Formation, Middle Jurassic) and preserves small tridactyl theropod tracks that represent the first occurrence of the ichnotaxon Carmelopodus in China and Asia. While these tracks are morphologically comparable to those from the Middle Jurassic type locality in North America, the specimens from China show the proximal margin of the digit IV impression in a more cranial position, which may indicate a trackmaker with a relatively short metatarsal IV. In addition to the skeletal record, the Carmelopodus footprints document the presence of small theropods in the dinosaur fauna of the Middle Jurassic Shaximiao Formation.