Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for mid...Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for middle and upper atmosphere observation; (2) Analyses and observation of middle and upper atmosphere; (3) Theoretical and modeling studies of planetary wave and gravity wave activities in the middle atmosphere and their relation to lower atmospheric processes; (4) Study on the coupling between the stratosphere and the troposphere.展开更多
This paper summarizes the research results obtained by Chinese scientists and/or through international collaborations during 2004 to 2006.Within the context of COSPAR,the progresses in the studies of the middle and up...This paper summarizes the research results obtained by Chinese scientists and/or through international collaborations during 2004 to 2006.Within the context of COSPAR,the progresses in the studies of the middle and upper atmosphere in China in the past two years are introduced with focusing the developments in facilities and instruments,and the advancements in scientific issues,e.g.,dynamics related processes,atmospheric constituents,and the coupling with the lower atmosphere.展开更多
This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean st...This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes,and the coupling of the middle atmospheric layers.展开更多
In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and...In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and composition,climate and chemistry-climate coupling and climate modelling,dynamics in particular those inducing the coupling of the atmospheric layers.展开更多
This report reviews the researches for the middle and upper atmosphere in 2020-2022 by Chinese scientists.The report consists of five parts introducing primarily the results from the aspects of the development of infr...This report reviews the researches for the middle and upper atmosphere in 2020-2022 by Chinese scientists.The report consists of five parts introducing primarily the results from the aspects of the development of infrastructure,the structure and composition,the climate and modeling,the dynamics for the middle and upper atmosphere,and Coupling between Stratosphere and Troposphere,respectively.展开更多
Solar Wind(SW)electron precipitation is able to deposit a substantial amount of energy in the nightside Martian upper atmosphere,potentially exerting an influence on its thermal structure.This study serves as the firs...Solar Wind(SW)electron precipitation is able to deposit a substantial amount of energy in the nightside Martian upper atmosphere,potentially exerting an influence on its thermal structure.This study serves as the first investigation of such an issue,with the aid of the simultaneous measurements of both neutral density and energetic electron intensity made on board the recent Mars Atmosphere and Volatile Evolution(MAVEN)spacecraft.We report that,from a statistical point of view,the existing measurements do not support a scenario of noticeable neutral heating via SW electron precipitation.However,during 3%−4%of the MAVEN orbits for which data are available,strong correlation between nightside temperature and electron intensity is observed,manifested as collocated enhancements in both parameters,as compared to the surrounding regions.In addition,our analysis also indicates that neutral heating via SW electron precipitation tends to be more effective at altitudes below 160 km for integrated electron intensities above 0.01 ergs·cm^−2·s^−1 over the energy range of 3−450 eV.The results reported here highlight the necessity of incorporating SW electron precipitation as a heat source in the nightside Martian upper atmosphere under extreme circumstances such as during interplanetary coronal mass ejections.展开更多
Scientific attention has recently been focused on the coupling of the earth's upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions o...Scientific attention has recently been focused on the coupling of the earth's upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions of Chinese scholars. This work first introduces new developments in the observation instruments of the upper atmosphere. Two kinds of instruments are involved: optical instruments(lidars, FP interferometers and all-sky airglow imagers) and radio instruments(MST radars and all-sky meteor radars). Based on the data from these instruments and satellites, the researches on climatology and wave disturbances in the upper atmosphere are then introduced. The studies on both the sporadic sodium layer and sporadic E-layer are presented as the main works concerning the coupling of the upper atmosphere and the low ionosphere. We then review the investigations on the ionospheric longitudinal structure and the causative atmospheric non-migrating tide as the main progress of the coupling between the atmosphere and the ionospheric F2-region. Regarding the ionosphere-thermosphere coupling, we introduce studies on the equatorial thermospheric anomaly, as well as the influence of the thermospheric winds and gravity waves to the ionospheric F2-region. Chinese scholars have made much advancement on the coupling of the ionosphere and upper atmosphere, including the observation instruments, data precession, and modeling, as well as the mechanism analysis.展开更多
To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on ...To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on the upper atmosphere has been developed by a Japanese inter-university project called the Inter-university Upper atmosphere Global Observation Network (1UGONET). The objective of this paper is to describe the infrastructure and tools developed by IUGONET. We focus on the data analysis software. It is written in Interactive Data Language (IDL) and is a plug-in for the THEMIS Data Analysis Software suite (TDAS), which is a set of IDL libraries used to visualize and analyze satellite- and ground-based data. We present plots of upper atmospheric data provided by IUGONET as examples of applications, and verify the usefulness of the software in the study of polar science. We discuss IUGONET's new and unique developments, i.e., an executable file of TDAS that can run on the IDL Virtual Machine, IDL routines to retrieve metadata from the IUGONET database, and an archive of 3-D simulation data that uses the Common Data Format so that it can easily be used with TDAS.展开更多
Responses of atmospheric carbon dioxide(CO_(2))density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended(WACCM-X).Our ensemble simulations show that CO_(2) v...Responses of atmospheric carbon dioxide(CO_(2))density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended(WACCM-X).Our ensemble simulations show that CO_(2) volume mixing ratios(VMRs)increase at high latitudes and decrease at mid and low latitudes by several ppmv in response to a 50%weakening of the geomagnetic field.Statistically significant changes in CO_(2) are mainly found above~90 km altitude and primarily redetermine the energy budget at~100-110 km.Our analysis of transformed Eulerian mean(TEM)circulation found that CO_(2) change is caused by enhanced upwelling at high latitudes and downwelling at mid and low latitudes as a result of increased Joule heating.We further analyzed the atmospheric CO_(2) response to realistic geomagnetic weakening between 1978 and 2013,and found increasing(decreasing)CO_(2) VMRs at high latitudes(mid and low latitudes)accordingly.For the first time,our simulation results demonstrate that the impact of geomagnetic variation on atmospheric CO_(2) distribution is noticeable on a time scale of decades.展开更多
This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that th...This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.展开更多
The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous...The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous history of nearly 30 years of Chinese polar expeditions and major progress in polar upper atmospheric physics research. This includes the polar upper atmospheric physics conjugate observation system at Zhongshan Station in the Antarctic and Yellow River Station in the Arctic, and original research achievements in polar ionospheric fields, aurora and particle precipitation, the polar current system, polar plasma convection, geomagnetic pulsations and space plasma waves, inter-hemispheric comparisons of the space environment, space weather in polar regions, power spectrum of the incoherent scatter radar, ionospheric heating experiments and polar meso- spheric summer echoes, polar ionosphere-magnetosphere numerical simulation and others. Finally, prospects for Chinese polar upper atmospheric physics research are outlined.展开更多
A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interfe...A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interferometer are described. The interferometer with a wide field of view can offer a stable benchmark optical path difference over a specified spectral region of 0.55-0.63μm because there are no quarter wave plates. Since the instrument employs a straight line common-path configuration but without moving parts and slits, it is very compact, simple, inherently robust and has high throughput. The paper is limited to a theoretical analysis.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.展开更多
The Chinese Meridian Project is a ground-based space environment monitoring facility in China.The first phase of the project has been put into formal operation since 2012 after 4-year’s construction.It consists of 15...The Chinese Meridian Project is a ground-based space environment monitoring facility in China.The first phase of the project has been put into formal operation since 2012 after 4-year’s construction.It consists of 15 observatories located roughly along 120°E longitude and 30°N latitude,with each observatory equipped with multiple instruments to monitor space environment.Based on the huge observational data accumulated,significant scientific achievements have been made with more than 300 peer-reviewed journal papers published.In this report,scientific results from the past two years have been reviewed with topics covering fields of geomagnetic,atmosphere,ionosphere,and their responses to solar activities.The excellent achievements from the Phase I of Chinese Meridian Project lay a good foundation for Phase II,which has already been approved with the official kick-off of construction in November 2019.It will conceive an unprecedented contribution to global space weather community from China.展开更多
Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km,which can also be obtained from the Mars Climate Database(MCD)and spacecraft aerobraking observations.In thi...Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km,which can also be obtained from the Mars Climate Database(MCD)and spacecraft aerobraking observations.In this research,we explain the method used to calculate neutral densities at 130 km via ionosphere observations and three long-period 130-km neutral density data sets at northern high latitudes(latitudes>60°)acquired through ionospheric data measured by the Mars Global Surveyor(MGS)Radio Occultation Experiment.The calculated 130-km neutral density data,along with 130-km density data from the aerobraking observations of the MGS and Mars Odyssey(ODY)in the northern high latitudes,were compared with MCD outputs at the same latitude,longitude,altitude,solar latitude,and local time.The 130-km density data derived from both the ionospheric profiles and aerobraking observations were found to show seasonal variations similar to those in the MCD data.With a negative shift of about 2×10^10 cm^−3,the corrected 130-km neutral densities derived from MCD v4.3 were consistent with those obtained from the two different observations.This result means that(1)the method used to derive the 130-km neutral densities with ionospheric profiles was effective,(2)the MCD v4.3 data sets generally overestimated the 130-km neutral densities at high latitudes,and(3)the neutral density observations from the MGS Radio Science Experiment could be used to calibrate a new atmospheric model of Mars.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the m...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the monitoring of the space environment over China,so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change,and making important innovative scientific achievements.The first phase of the CMP passed the national acceptance in 2012.It has been running for nearly ten years and has accumulated more than 8 TB monitoring data.These data are all available to all data users through the data center of the project.From 2020 to 2021,users of CMP data have completed a series of original works,which have solved current scientific problems in the field of space physics research.On the other hand,they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.展开更多
By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and...By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.40333034,40075007,and 40175002the.Chinese Academy of Sciences under Grant No.KZCX-SW-217.
文摘Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for middle and upper atmosphere observation; (2) Analyses and observation of middle and upper atmosphere; (3) Theoretical and modeling studies of planetary wave and gravity wave activities in the middle atmosphere and their relation to lower atmospheric processes; (4) Study on the coupling between the stratosphere and the troposphere.
基金Supported by the National Natural Science Foundation of China(40374056,40333034)Chinese Academy of Science KZCX3-SW-217,KGCX2-SW-408,KGCX3-SYW-403
文摘This paper summarizes the research results obtained by Chinese scientists and/or through international collaborations during 2004 to 2006.Within the context of COSPAR,the progresses in the studies of the middle and upper atmosphere in China in the past two years are introduced with focusing the developments in facilities and instruments,and the advancements in scientific issues,e.g.,dynamics related processes,atmospheric constituents,and the coupling with the lower atmosphere.
文摘This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes,and the coupling of the middle atmospheric layers.
文摘In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and composition,climate and chemistry-climate coupling and climate modelling,dynamics in particular those inducing the coupling of the atmospheric layers.
文摘This report reviews the researches for the middle and upper atmosphere in 2020-2022 by Chinese scientists.The report consists of five parts introducing primarily the results from the aspects of the development of infrastructure,the structure and composition,the climate and modeling,the dynamics for the middle and upper atmosphere,and Coupling between Stratosphere and Troposphere,respectively.
基金the B-type Strategic Priority Program No.XDB41000000 funded by the Chinese Academy of Sciencesthe pre-research project on Civil Aerospace Technologies No.D020105 funded by China’s National Space Administrationthe National Natural Science Foundation of China through grants 41525015,41774186,41904154,and 42030201.
文摘Solar Wind(SW)electron precipitation is able to deposit a substantial amount of energy in the nightside Martian upper atmosphere,potentially exerting an influence on its thermal structure.This study serves as the first investigation of such an issue,with the aid of the simultaneous measurements of both neutral density and energetic electron intensity made on board the recent Mars Atmosphere and Volatile Evolution(MAVEN)spacecraft.We report that,from a statistical point of view,the existing measurements do not support a scenario of noticeable neutral heating via SW electron precipitation.However,during 3%−4%of the MAVEN orbits for which data are available,strong correlation between nightside temperature and electron intensity is observed,manifested as collocated enhancements in both parameters,as compared to the surrounding regions.In addition,our analysis also indicates that neutral heating via SW electron precipitation tends to be more effective at altitudes below 160 km for integrated electron intensities above 0.01 ergs·cm^−2·s^−1 over the energy range of 3−450 eV.The results reported here highlight the necessity of incorporating SW electron precipitation as a heat source in the nightside Martian upper atmosphere under extreme circumstances such as during interplanetary coronal mass ejections.
基金supported by the Chinese Academy of Sciences (Grant No. KZZD-EW-01-2)National Important Basic Research Project (Grant No. 2011CB811405)National Natural Science Foundation of China (Grant Nos. 41131066, 41321003)
文摘Scientific attention has recently been focused on the coupling of the earth's upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions of Chinese scholars. This work first introduces new developments in the observation instruments of the upper atmosphere. Two kinds of instruments are involved: optical instruments(lidars, FP interferometers and all-sky airglow imagers) and radio instruments(MST radars and all-sky meteor radars). Based on the data from these instruments and satellites, the researches on climatology and wave disturbances in the upper atmosphere are then introduced. The studies on both the sporadic sodium layer and sporadic E-layer are presented as the main works concerning the coupling of the upper atmosphere and the low ionosphere. We then review the investigations on the ionospheric longitudinal structure and the causative atmospheric non-migrating tide as the main progress of the coupling between the atmosphere and the ionospheric F2-region. Regarding the ionosphere-thermosphere coupling, we introduce studies on the equatorial thermospheric anomaly, as well as the influence of the thermospheric winds and gravity waves to the ionospheric F2-region. Chinese scholars have made much advancement on the coupling of the ionosphere and upper atmosphere, including the observation instruments, data precession, and modeling, as well as the mechanism analysis.
基金supported by the Special Edu-cational Research Budget(Research Promotion)[FY2009]the Special Budget(Project)[FY2010 and later years]from the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japansupported by the GRENE Arctic Climate Change Research Project,Japan
文摘To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on the upper atmosphere has been developed by a Japanese inter-university project called the Inter-university Upper atmosphere Global Observation Network (1UGONET). The objective of this paper is to describe the infrastructure and tools developed by IUGONET. We focus on the data analysis software. It is written in Interactive Data Language (IDL) and is a plug-in for the THEMIS Data Analysis Software suite (TDAS), which is a set of IDL libraries used to visualize and analyze satellite- and ground-based data. We present plots of upper atmospheric data provided by IUGONET as examples of applications, and verify the usefulness of the software in the study of polar science. We discuss IUGONET's new and unique developments, i.e., an executable file of TDAS that can run on the IDL Virtual Machine, IDL routines to retrieve metadata from the IUGONET database, and an archive of 3-D simulation data that uses the Common Data Format so that it can easily be used with TDAS.
基金This work was supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(41621004,41427901)+2 种基金the Open Research Project of Large Research Infrastructures—“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”the Key Research Program of the IGGCAS with Grant No.IGGCAS-201904XZ thanks the UCAS Joint PhD Training Program.The National Center for Atmospheric Research is a major facility sponsored by the National Science Foundation under Cooperative Agreement No.1852977.
文摘Responses of atmospheric carbon dioxide(CO_(2))density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended(WACCM-X).Our ensemble simulations show that CO_(2) volume mixing ratios(VMRs)increase at high latitudes and decrease at mid and low latitudes by several ppmv in response to a 50%weakening of the geomagnetic field.Statistically significant changes in CO_(2) are mainly found above~90 km altitude and primarily redetermine the energy budget at~100-110 km.Our analysis of transformed Eulerian mean(TEM)circulation found that CO_(2) change is caused by enhanced upwelling at high latitudes and downwelling at mid and low latitudes as a result of increased Joule heating.We further analyzed the atmospheric CO_(2) response to realistic geomagnetic weakening between 1978 and 2013,and found increasing(decreasing)CO_(2) VMRs at high latitudes(mid and low latitudes)accordingly.For the first time,our simulation results demonstrate that the impact of geomagnetic variation on atmospheric CO_(2) distribution is noticeable on a time scale of decades.
基金jointly supported by the National Science Foundation of China(Grant Nos.91437105,41575041 and 41430533)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.
文摘The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous history of nearly 30 years of Chinese polar expeditions and major progress in polar upper atmospheric physics research. This includes the polar upper atmospheric physics conjugate observation system at Zhongshan Station in the Antarctic and Yellow River Station in the Arctic, and original research achievements in polar ionospheric fields, aurora and particle precipitation, the polar current system, polar plasma convection, geomagnetic pulsations and space plasma waves, inter-hemispheric comparisons of the space environment, space weather in polar regions, power spectrum of the incoherent scatter radar, ionospheric heating experiments and polar meso- spheric summer echoes, polar ionosphere-magnetosphere numerical simulation and others. Finally, prospects for Chinese polar upper atmospheric physics research are outlined.
基金Project supported by the National Natural Science Foundation of China (Grant No.40875013)the National Defense Basic Scientific Research Project (Grant No.A1420080187)+1 种基金the National High Technology Research and Development Program of China (Grant No.2006AA12Z152)the State Key Program of National Natural Science Foundation of China (Grant No.40537031)
文摘A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interferometer are described. The interferometer with a wide field of view can offer a stable benchmark optical path difference over a specified spectral region of 0.55-0.63μm because there are no quarter wave plates. Since the instrument employs a straight line common-path configuration but without moving parts and slits, it is very compact, simple, inherently robust and has high throughput. The paper is limited to a theoretical analysis.
基金Supported by National Major Science and Technology Infrastructure Construction Project:the Chinese Meridian Project(2017-000052-73-01-002390)。
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.
基金Supported by the Open Research Project of Large Research Infrastructures of Chinese Academy of Sciences,the Study on the Interaction between Low/Mid-latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project,and the Chinese Meridian Project。
文摘The Chinese Meridian Project is a ground-based space environment monitoring facility in China.The first phase of the project has been put into formal operation since 2012 after 4-year’s construction.It consists of 15 observatories located roughly along 120°E longitude and 30°N latitude,with each observatory equipped with multiple instruments to monitor space environment.Based on the huge observational data accumulated,significant scientific achievements have been made with more than 300 peer-reviewed journal papers published.In this report,scientific results from the past two years have been reviewed with topics covering fields of geomagnetic,atmosphere,ionosphere,and their responses to solar activities.The excellent achievements from the Phase I of Chinese Meridian Project lay a good foundation for Phase II,which has already been approved with the official kick-off of construction in November 2019.It will conceive an unprecedented contribution to global space weather community from China.
基金funded by the National Science Foundation of China(NSFC,no.41674175)supported by the preresearch Project on Civil Aerospace Technologies(no.D020105)funded by the China National Space Administration.
文摘Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km,which can also be obtained from the Mars Climate Database(MCD)and spacecraft aerobraking observations.In this research,we explain the method used to calculate neutral densities at 130 km via ionosphere observations and three long-period 130-km neutral density data sets at northern high latitudes(latitudes>60°)acquired through ionospheric data measured by the Mars Global Surveyor(MGS)Radio Occultation Experiment.The calculated 130-km neutral density data,along with 130-km density data from the aerobraking observations of the MGS and Mars Odyssey(ODY)in the northern high latitudes,were compared with MCD outputs at the same latitude,longitude,altitude,solar latitude,and local time.The 130-km density data derived from both the ionospheric profiles and aerobraking observations were found to show seasonal variations similar to those in the MCD data.With a negative shift of about 2×10^10 cm^−3,the corrected 130-km neutral densities derived from MCD v4.3 were consistent with those obtained from the two different observations.This result means that(1)the method used to derive the 130-km neutral densities with ionospheric profiles was effective,(2)the MCD v4.3 data sets generally overestimated the 130-km neutral densities at high latitudes,and(3)the neutral density observations from the MGS Radio Science Experiment could be used to calibrate a new atmospheric model of Mars.
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the monitoring of the space environment over China,so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change,and making important innovative scientific achievements.The first phase of the CMP passed the national acceptance in 2012.It has been running for nearly ten years and has accumulated more than 8 TB monitoring data.These data are all available to all data users through the data center of the project.From 2020 to 2021,users of CMP data have completed a series of original works,which have solved current scientific problems in the field of space physics research.On the other hand,they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences [grant number XDA17010105]the National Natural Science Foundation of China [grant numbers 91437105,41430533,and 41575041]the Key Research Program of Frontier Sciences [grant number QYZDY-SSW-DQC018]
文摘By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.