This paper proposes a novel pair of induced IF covering approximation operators in an IF covering approximation space,and discusses some basic properties about definable IFSs.A measure is defined to describe the uncer...This paper proposes a novel pair of induced IF covering approximation operators in an IF covering approximation space,and discusses some basic properties about definable IFSs.A measure is defined to describe the uncertainty of IFSs in IF covering approximation spaces.Finally,we study the properties of reductions of an IF covering respectively based on induced IF covering approximation operators and IF covering approximation operators.展开更多
Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land exp...Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land expansion. Given Morocco’s per capita water availability, River-basin hydrologic </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> could potentially bring together agricultural, water resources </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> conservation objectives. However, not everywhere have hydrological models considered events and continuous assessment of climatic data. In this study, HEC-HMS </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> approach is used to explore the event-based and continuous-process simulation of land-use and </span><span style="font-family:Verdana;">land cover</span><span style="font-family:Verdana;"> change (LULCC) impact on water balance. The use of HEC-GeoHMS facilitated the digital data processing for coupling with the model. The basin’s physical characteristics and the hydro-climatic data helped to generate a geospatial database for </span><span style="font-family:Verdana;">HEC-HMS</span><span style="font-family:Verdana;"> model. We analyzed baseline and future scenario changes for the 1980-2016 period using the SCS Curve-Number and the Soil Moisture Accounting (SMA) loss methods. SMA was coupled with the Hargreaves evapotranspiration method. Model calibration focused on reproducing observed basin runoff hydrograph. To evaluate the model performance for both calibration and validation</span></span><span style="font-family:Verdana;">, </span><span style="font-family:""><span style="font-family:Verdana;">the Coefficient of determination (R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RSR) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Percent Bias (PBIAS) criteria were exploited. The average calibration NSE values were</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">0.740 and 0.585 for event-based (daily) and continuous-process (annual) respectively. The R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, RSR </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> PBIAS values were 0.624, 0.634 </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> +16.7 respectively. This is rated as good performance besides the validation simulations </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> satisfactory for subsequent hydrologic analyses. We conclude that the basin’s hydrologic response to positive and negative LULCC scenarios is significant </span><span style="font-family:Verdana;">both</span><span style="font-family:Verdana;"> positive and negative scenarios. The study findings provide useful information for key stakeholders/decision-makers in water resources.展开更多
基金supported by the National Natural Science Foundation of China(Nos.60773174 and 60963006)Hebei Province Science and Technology Research and Development Program(No.09276158).
文摘This paper proposes a novel pair of induced IF covering approximation operators in an IF covering approximation space,and discusses some basic properties about definable IFSs.A measure is defined to describe the uncertainty of IFSs in IF covering approximation spaces.Finally,we study the properties of reductions of an IF covering respectively based on induced IF covering approximation operators and IF covering approximation operators.
文摘Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land expansion. Given Morocco’s per capita water availability, River-basin hydrologic </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> could potentially bring together agricultural, water resources </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> conservation objectives. However, not everywhere have hydrological models considered events and continuous assessment of climatic data. In this study, HEC-HMS </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> approach is used to explore the event-based and continuous-process simulation of land-use and </span><span style="font-family:Verdana;">land cover</span><span style="font-family:Verdana;"> change (LULCC) impact on water balance. The use of HEC-GeoHMS facilitated the digital data processing for coupling with the model. The basin’s physical characteristics and the hydro-climatic data helped to generate a geospatial database for </span><span style="font-family:Verdana;">HEC-HMS</span><span style="font-family:Verdana;"> model. We analyzed baseline and future scenario changes for the 1980-2016 period using the SCS Curve-Number and the Soil Moisture Accounting (SMA) loss methods. SMA was coupled with the Hargreaves evapotranspiration method. Model calibration focused on reproducing observed basin runoff hydrograph. To evaluate the model performance for both calibration and validation</span></span><span style="font-family:Verdana;">, </span><span style="font-family:""><span style="font-family:Verdana;">the Coefficient of determination (R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RSR) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Percent Bias (PBIAS) criteria were exploited. The average calibration NSE values were</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">0.740 and 0.585 for event-based (daily) and continuous-process (annual) respectively. The R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, RSR </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> PBIAS values were 0.624, 0.634 </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> +16.7 respectively. This is rated as good performance besides the validation simulations </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> satisfactory for subsequent hydrologic analyses. We conclude that the basin’s hydrologic response to positive and negative LULCC scenarios is significant </span><span style="font-family:Verdana;">both</span><span style="font-family:Verdana;"> positive and negative scenarios. The study findings provide useful information for key stakeholders/decision-makers in water resources.