期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Deep Background of Wenchuan Earthquake and the Upper Crust Structure beneath the Longmen Shan and Adjacent Areas 被引量:12
1
作者 LI Qiusheng GAO Rui +5 位作者 WANG Haiyan ZHANG Jisheng LU Zhanwu LI Pengwu GUAN Ye HE Rizheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期733-739,共7页
By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The ... By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake. 展开更多
关键词 the Longmen Shan deep seismic sounding profile upper crust structure Wenchuan Earthquake
下载PDF
Upper crust structure of eastern A’nyemaqên suture zone: Results of Barkam-Luqu-Gulang deep seismic sounding profile
2
作者 张先康Geophysical Exploration Center China Earthquake Administration +16 位作者 杨卓欣Geophysical Exploration Center China Earthquake Administration 徐朝繁Geophysical Exploration Center China Earthquake Administration 潘纪顺Geophysical Exploration Center China Earthquake Administration 刘志Geophysical Exploration Center China Earthquake Administration 王夫运Geophysical Exploration Center China Earthquake Administration 嘉世旭Geophysical Exploration Center China Earthquake Administration 赵金仁Geophysical Exploration Center China Earthquake Administration 张成科Geophysical Exploration Center China Earthquake Administration 孙国伟 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第6期628-640,共13页
Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A'nyemaqên suture zo... Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A'nyemaqên suture zone. The upper crust structures around eastern A'nyemaqên suture zone and its adjacent area are reconstructed based on the arrival times of refracted Pg and Sg waves by using finite difference method, ray tracing inversion, time-term method and travel-time curve analysis. The results show that the depth variation of basement along profile is very strong as indicated by Pg and Sg waves. The basement rose in Zoigê basin and depressed in eastern A'nyemaqên suture zone, and it gradually rose again northward and then depressed. The results also indicate that eastern A'nyemaqên suture zone behaves as inhomogeneous low velocity structures in the upper crust and is inclined to- ward the south. Hoh Sai Hu-Maqên fault, Wudu-Diebu fault and Zhouqu-Liangdang fault are characterized by low velocity distributions with various scales. The distinct variation in basement depth occurred near Hoh Sai Hu-Maqên fault and Zhouqu-Liangdang fault, which are main tectonic boundaries of A'nyemaqên suture zone. Wudu-Diebu fault, located at the depth variation zone of the basement, possibly has the same deep tectonic background with Zhouqu-Liangdang fault. The strongly depressed basement characterized by low velocity distribution and lateral inhomogeneity in A'nyemaqên suture zone implies crushed zone features under pinching action. 展开更多
关键词 eastern A'nyemaqên suture zone deep seismic refraction upper crust structures
下载PDF
Tomographic investigation of the upper crustal structure and seismotectonic environments in Yunnan Province 被引量:2
3
作者 白志明 王椿镛 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期127-139,共13页
Investigation has been made for the upper crust structure and seismotectonic environments in Yunnan Province using the plentiful DSS data of the four profiles. The derived velocity model has a good relationship with t... Investigation has been made for the upper crust structure and seismotectonic environments in Yunnan Province using the plentiful DSS data of the four profiles. The derived velocity model has a good relationship with the ex-posed basins, uplifts and faults. The low velocity anomaly corresponding to the volcano also has been revealed. There exists a prominent lateral inhomogeneity within the upper crust of Yunnan region. The depth of crystalline basement generally ranges from 0 km to 5 km, and the bedrocks are exposed on the ground directly in some places, nevertheless the thickness of sedimentary cover also can reach to 8 km or even 12 km at some large depressions. Although the Changning-Shuangjiang fault is a boundary between two first class tectonic units, its incision depth within the crust maybe shallow. On the other hand, known as the plates seam, the Honghe fault has a distinct evi-dence of extending into the mid-lower crust. The widely spread activity of the volcanoes in the geological era has a close relationship with the earthquakes occurrence nowadays. Despite of the ceasing of the volcanoes in some places on the ground, the material in the mid-lower crust is still active, and there still exists strong upward stress. As the ceasing of the volcanoes on the surface, most parts of the power from the lower crust and the upper mantle cannot be released; therefore it accumulates at some appropriate tectonic locations. Moreover, the saturation of the water from the basin, the action of other fluids, and the effects of the outer stress maybe another direct reason ac-count for the strong earthquakes occurrence in Yunnan region. 展开更多
关键词 DSS data upper crust structure seismotectonic environment TOMOGRAPHY
下载PDF
3-D seismic tomography for velocity and interface structure of the crust and upper mantle(theoreticalpart)
4
作者 郑需要 张先康 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第5期32-40,共9页
A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of hig... A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated. 展开更多
关键词 model parameterization ray tracing 3-D inversion crust and upper mantle structure
下载PDF
Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China 被引量:20
5
作者 WANG ChunYong WU QingJu +2 位作者 DUAN YongHong WANG ZhiShuo LOU Hai 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期821-857,共37页
From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associa... From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work. 展开更多
关键词 North China Craton crust and upper mantle structure Deep seismic sounding profile Deep seismic reflection profile Broadband seismic array Seismogenic environment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部