To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data prov...To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.展开更多
In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated oz...In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the vari- ation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.展开更多
The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four mo...The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four months (June to September) of the southwest monsoon season. Variability in the quantum of rainfall during the monsoon season has profound impacts on water resources, power generation, agriculture, economics and ecosystems in the country. The inter annual variability of Indian Summer Monsoon Rainfall (ISMR) depends on atmospheric and oceanic conditions prevailed during the season. In this study we have made an attempt to understand the variation of the of zonal winds in the tropical Upper Troposphere and Lower Stratosphere (UT/LS) region during deficient and Excess rainfall years of Indian summer monsoon and its relation to Indian Summer Monsoon Rainfall (ISMR). It is found that in the equatorial Upper Troposphere zonal winds have westerly anomalies during deficient rainfall year’s and easterly anomaly during excess rainfall years of Indian summer monsoon and opposite zonal wind anomaly is noted in the equatorial Lower Stratosphere during the deficient and excess rainfall years of Indian summer monsoon. It is also found that the June to September upper troposphere zonal winds averaged between 15°N and 15°S latitudes have a long-term trend during 1960 to 1998. Over this period the tropical easterlies and the tropical jet stream have weakened with time.展开更多
The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative re...The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative relative diffusion region exists, i.e., σy∝ t 3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given by σy = √2KT. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests. Key words Tropospheric and lower stratospheric diffusion - Relative diffusion - Large scale turbulence - Nuclear explosion clouds This work is sponsored by the National Natural Science Foundation of China under Grant No. 49505064.The author would like to thank Prof. Chen Jiayi Department of Geophysics of Peking University and Dr. Cai Xiaoming School of Geography and Environmental Sciences of Birmingham University for their helpful discussions.展开更多
This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories init...This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories initialized in the stratosphere. The trajectory datasets were derived from the high-resolution Lagrangian particle dispersion model (FLEXPART) simulation driven by the wind fields acquired from the National Center for Environmental Prediction (NCEP). The results indicate that the distribution of residence time (tTST) of tropopause-crossing trajectories in the lowermost stratosphere represents a horizontal signature of the Asian summer monsoon. Vertically, the distribution of tTST can be roughly separated into two layers: a consistent lower layer with tTST 〈5 days forming a narrow band, corresponding to a layer-3 km thick following the location of the tropopause, and an upper layer at a larger distance from the local tropopause. The maximum residence time was -20 days, especially within the Asian high anticyclone consistent with its confinement effects. In general, the overall geographical distribution of dehydration points was not coincident with the location of tropopause crossing. TST trajectories, which were initialized in the stratosphere, underwent their Lagrangian cold points mostly in the tropics and subtropics 1 4 days after the TST event; they were characterized by a wide range of temperature differences, with a mean value of 3-12 K. The vertical extent of the influence of tropospheric intrusion on the Asian monsoon region in the stratosphere exhibited a peak at -16.5-18.5 km, and the uppermost height was -21 km.展开更多
Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for mid...Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for middle and upper atmosphere observation; (2) Analyses and observation of middle and upper atmosphere; (3) Theoretical and modeling studies of planetary wave and gravity wave activities in the middle atmosphere and their relation to lower atmospheric processes; (4) Study on the coupling between the stratosphere and the troposphere.展开更多
This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean st...This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes,and the coupling of the middle atmospheric layers.展开更多
This paper highlights the global warming of the lower atmosphere of West African tropical area using <em>in-situ</em> data. The study is based on the analysis of 500-m interval vertical profiles of radioso...This paper highlights the global warming of the lower atmosphere of West African tropical area using <em>in-situ</em> data. The study is based on the analysis of 500-m interval vertical profiles of radiosonde temperature above Niamey (13.47<span style="white-space:nowrap;">°</span>N;2.16<span style="white-space:nowrap;">°</span>E) a sub-Saharan meteorological station. The annual cycle of surface temperatures shows seasonally two peaks located in April/May and in October and two minimum in December/January and August respectively. In the mid-troposphere (between 5 km and 10 km height), time series of monthly mean temperatures from January 2001 to December 2018, shows an annual variability with a slight downward trend of -0.036<span style="white-space:nowrap;">°</span>C per decade. In the lower stratosphere (25 - 30 km altitude) a cooling of -0.64<span style="white-space:nowrap;">°</span>C/decade is observed. Temperatures time series also highlight the presence of two breaking points associated with the El Ni<span style="white-space:nowrap;">ñ</span>o-Southern Oscillation (ENSO) events. When performing a separation regarding Southern Oscillation Index (SOI) time series, model parameters of the linear regression indicate a tropospheric warming during the neutral and La Ni<span style="white-space:nowrap;">ñ</span>a phases and a stratospheric cooling. The analysis of the lower stratosphere zonal wind highlights different behaviours of the quasi-biennial oscillation (QBO) during the neutral and La Ni<span style="white-space:nowrap;">ñ</span>a phases.展开更多
利用ENVISAT卫星搭载的迈克尔逊干涉仪和Aqua卫星搭载的AIRS探测仪观测到的大气NH3浓度数据以及全球大气化学—气候模式EMAC模拟的NH3浓度结果,分析了2008~2011年6~9月亚洲地区大气NH3的空间分布特征。结果显示,夏季时近地面NH3浓度最...利用ENVISAT卫星搭载的迈克尔逊干涉仪和Aqua卫星搭载的AIRS探测仪观测到的大气NH3浓度数据以及全球大气化学—气候模式EMAC模拟的NH3浓度结果,分析了2008~2011年6~9月亚洲地区大气NH3的空间分布特征。结果显示,夏季时近地面NH3浓度最高值出现在印度北部,同时紧邻印度北部的孟加拉湾存在深对流,凭借青藏高原的高海拔地势,此深对流可以将寿命较短的NH3输送到上对流层和下平流层(Upper Troposphere and Lower Stratosphere,UTLS),所以在青藏高原上空出现了NH3的向上输送柱,即青藏高原是NH3向上输送的主要通道。亚洲夏季风反气旋的位置主导着NH3在UTLS区域的空间分布,反气旋内持续存在NH3高浓度中心,NH3高浓度中心位置与反气旋中心位置对应良好,会出现一个或两个NH3高浓度中心,说明反气旋内环流形式的变化对反气旋内NH3分布特征有重要影响。展开更多
利用美国航空航天局MERRA(Modern-Era Retrospective Analysis for Research and Applications)再分析资料和MODIS(Moderate-Resolution Imaging Spectroradiometer)卫星资料以及欧洲气象中心ECMWF-Interim(European Centre for Medium-...利用美国航空航天局MERRA(Modern-Era Retrospective Analysis for Research and Applications)再分析资料和MODIS(Moderate-Resolution Imaging Spectroradiometer)卫星资料以及欧洲气象中心ECMWF-Interim(European Centre for Medium-Range Weather Forecasts)再分析资料,分析了发生于青藏高原北侧上空的一次地形重力波事件,并使用中尺度预报模式WRF-ARW.V3.0(Weather Research and Forecasting model,V3.0)对其进行了数值模拟.在此基础上,诊断分析了此次地形重力波在UTLS(Upper Troposphere and Lower Stratosphere)区域造成的物质和能量垂直传输特征.分析结果表明这一中尺度地形重力波信号的水平波长约为600km,与地形扰动水平尺度接近,重力波在对流层中传播的垂直波长约为3km,在垂直方向上随着高度的增加呈现出由东向西倾斜的结构特征.此次地形重力波上传进入平流层并在150hPa附近破碎,波破碎后动量通量在短时间内发生了强烈的衰减,重力波携带的能量在破碎高度附近释放.重力波破碎的同时垂直方向湍流混合变得异常强烈,湍流交换系数可在短时间内增加到背景值的8倍以上,剧烈湍流混合过程导致了对流层上层的空气进入平流层,使下平流层空气出现了位势涡度和臭氧的低值区,在浮力频率的垂直剖面中也可以看到由于地形重力波过程造成的平流层下层浮力频率异常低值区.展开更多
采用A-Train系列卫星的AURA/MLS水汽、温度资料,CALIPSO/CALIOP云物理资料,结合ECMWF气象再分析资料,分析了东亚地区云顶高于对流层顶事件(Cloud Top Above the Tropopause,CTAT)的区域分布,及其对上对流层—下平流层(Upper Troposph...采用A-Train系列卫星的AURA/MLS水汽、温度资料,CALIPSO/CALIOP云物理资料,结合ECMWF气象再分析资料,分析了东亚地区云顶高于对流层顶事件(Cloud Top Above the Tropopause,CTAT)的区域分布,及其对上对流层—下平流层(Upper Troposphere and Lower Stratosphere,UTLS)水汽和温度结构的影响。结果表明:亚洲季风区的夏季CTAT发生率是30%~55%,为全球最强区域;东北亚的夏季CTAT发生率是15%~20%,为中纬度最强分布区。以CTAT为指标的合成结果表明:15~30°N的东亚—西太平洋UTLS,水汽呈"上干下湿"的异常分布,温度呈"上冷下暖"的异常分布,该结构与该区域热带气旋合成的结果一致,说明热带气旋是该区域CTAT形成的主要天气系统;35~50°N的东北亚UTLS,水汽呈"上干下湿"的异常分布,温度呈"上暖下冷"的异常分布,该结构与该区域温带气旋合成的结果一致,说明温带气旋是该区域CTAT形成的主要天气系统。展开更多
基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011323)National Natural Science Foun-dation of China(42130604,42130605,72293604)+4 种基金Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Waters(GSTOEW)First-Class Discipline Plan of Guangdong Province(080503032101,231420003)Fundamental Research Funds for the Central Universities(202362001,202072010)China Scholarship Council(202208440223)Natural Science Foundation of Shanghai(23ZR1473800)。
文摘To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.
基金jointly supported by the National Basic Research Program of China (Grant No.2010CB428602)the National Natural Science Foundation of China (Grant Nos.41275046 and 41025017)
文摘In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the vari- ation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.
文摘The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four months (June to September) of the southwest monsoon season. Variability in the quantum of rainfall during the monsoon season has profound impacts on water resources, power generation, agriculture, economics and ecosystems in the country. The inter annual variability of Indian Summer Monsoon Rainfall (ISMR) depends on atmospheric and oceanic conditions prevailed during the season. In this study we have made an attempt to understand the variation of the of zonal winds in the tropical Upper Troposphere and Lower Stratosphere (UT/LS) region during deficient and Excess rainfall years of Indian summer monsoon and its relation to Indian Summer Monsoon Rainfall (ISMR). It is found that in the equatorial Upper Troposphere zonal winds have westerly anomalies during deficient rainfall year’s and easterly anomaly during excess rainfall years of Indian summer monsoon and opposite zonal wind anomaly is noted in the equatorial Lower Stratosphere during the deficient and excess rainfall years of Indian summer monsoon. It is also found that the June to September upper troposphere zonal winds averaged between 15°N and 15°S latitudes have a long-term trend during 1960 to 1998. Over this period the tropical easterlies and the tropical jet stream have weakened with time.
文摘The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative relative diffusion region exists, i.e., σy∝ t 3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given by σy = √2KT. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests. Key words Tropospheric and lower stratospheric diffusion - Relative diffusion - Large scale turbulence - Nuclear explosion clouds This work is sponsored by the National Natural Science Foundation of China under Grant No. 49505064.The author would like to thank Prof. Chen Jiayi Department of Geophysics of Peking University and Dr. Cai Xiaoming School of Geography and Environmental Sciences of Birmingham University for their helpful discussions.
基金the National Natural Science Foundation of China(Grant No.41105027 and 41130960)the Key Project of Basic Scientific Research and Operation fund of the Chinese Academy of Meteorological Sciences(Grant No.2011Z001)the Special Scientific Research Project of China Commonweal Trade(Meteorology)(Grant Nos. GYHY201006009 and GYHY201006053)
文摘This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories initialized in the stratosphere. The trajectory datasets were derived from the high-resolution Lagrangian particle dispersion model (FLEXPART) simulation driven by the wind fields acquired from the National Center for Environmental Prediction (NCEP). The results indicate that the distribution of residence time (tTST) of tropopause-crossing trajectories in the lowermost stratosphere represents a horizontal signature of the Asian summer monsoon. Vertically, the distribution of tTST can be roughly separated into two layers: a consistent lower layer with tTST 〈5 days forming a narrow band, corresponding to a layer-3 km thick following the location of the tropopause, and an upper layer at a larger distance from the local tropopause. The maximum residence time was -20 days, especially within the Asian high anticyclone consistent with its confinement effects. In general, the overall geographical distribution of dehydration points was not coincident with the location of tropopause crossing. TST trajectories, which were initialized in the stratosphere, underwent their Lagrangian cold points mostly in the tropics and subtropics 1 4 days after the TST event; they were characterized by a wide range of temperature differences, with a mean value of 3-12 K. The vertical extent of the influence of tropospheric intrusion on the Asian monsoon region in the stratosphere exhibited a peak at -16.5-18.5 km, and the uppermost height was -21 km.
基金supported by the National Natural Science Foundation of China under Grant Nos.40333034,40075007,and 40175002the.Chinese Academy of Sciences under Grant No.KZCX-SW-217.
文摘Recent advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere in China are briefly reviewed. This review emphasizes four aspects: (1) Development of instrumentation for middle and upper atmosphere observation; (2) Analyses and observation of middle and upper atmosphere; (3) Theoretical and modeling studies of planetary wave and gravity wave activities in the middle atmosphere and their relation to lower atmospheric processes; (4) Study on the coupling between the stratosphere and the troposphere.
文摘This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes,and the coupling of the middle atmospheric layers.
文摘This paper highlights the global warming of the lower atmosphere of West African tropical area using <em>in-situ</em> data. The study is based on the analysis of 500-m interval vertical profiles of radiosonde temperature above Niamey (13.47<span style="white-space:nowrap;">°</span>N;2.16<span style="white-space:nowrap;">°</span>E) a sub-Saharan meteorological station. The annual cycle of surface temperatures shows seasonally two peaks located in April/May and in October and two minimum in December/January and August respectively. In the mid-troposphere (between 5 km and 10 km height), time series of monthly mean temperatures from January 2001 to December 2018, shows an annual variability with a slight downward trend of -0.036<span style="white-space:nowrap;">°</span>C per decade. In the lower stratosphere (25 - 30 km altitude) a cooling of -0.64<span style="white-space:nowrap;">°</span>C/decade is observed. Temperatures time series also highlight the presence of two breaking points associated with the El Ni<span style="white-space:nowrap;">ñ</span>o-Southern Oscillation (ENSO) events. When performing a separation regarding Southern Oscillation Index (SOI) time series, model parameters of the linear regression indicate a tropospheric warming during the neutral and La Ni<span style="white-space:nowrap;">ñ</span>a phases and a stratospheric cooling. The analysis of the lower stratosphere zonal wind highlights different behaviours of the quasi-biennial oscillation (QBO) during the neutral and La Ni<span style="white-space:nowrap;">ñ</span>a phases.
文摘利用ENVISAT卫星搭载的迈克尔逊干涉仪和Aqua卫星搭载的AIRS探测仪观测到的大气NH3浓度数据以及全球大气化学—气候模式EMAC模拟的NH3浓度结果,分析了2008~2011年6~9月亚洲地区大气NH3的空间分布特征。结果显示,夏季时近地面NH3浓度最高值出现在印度北部,同时紧邻印度北部的孟加拉湾存在深对流,凭借青藏高原的高海拔地势,此深对流可以将寿命较短的NH3输送到上对流层和下平流层(Upper Troposphere and Lower Stratosphere,UTLS),所以在青藏高原上空出现了NH3的向上输送柱,即青藏高原是NH3向上输送的主要通道。亚洲夏季风反气旋的位置主导着NH3在UTLS区域的空间分布,反气旋内持续存在NH3高浓度中心,NH3高浓度中心位置与反气旋中心位置对应良好,会出现一个或两个NH3高浓度中心,说明反气旋内环流形式的变化对反气旋内NH3分布特征有重要影响。
文摘利用美国航空航天局MERRA(Modern-Era Retrospective Analysis for Research and Applications)再分析资料和MODIS(Moderate-Resolution Imaging Spectroradiometer)卫星资料以及欧洲气象中心ECMWF-Interim(European Centre for Medium-Range Weather Forecasts)再分析资料,分析了发生于青藏高原北侧上空的一次地形重力波事件,并使用中尺度预报模式WRF-ARW.V3.0(Weather Research and Forecasting model,V3.0)对其进行了数值模拟.在此基础上,诊断分析了此次地形重力波在UTLS(Upper Troposphere and Lower Stratosphere)区域造成的物质和能量垂直传输特征.分析结果表明这一中尺度地形重力波信号的水平波长约为600km,与地形扰动水平尺度接近,重力波在对流层中传播的垂直波长约为3km,在垂直方向上随着高度的增加呈现出由东向西倾斜的结构特征.此次地形重力波上传进入平流层并在150hPa附近破碎,波破碎后动量通量在短时间内发生了强烈的衰减,重力波携带的能量在破碎高度附近释放.重力波破碎的同时垂直方向湍流混合变得异常强烈,湍流交换系数可在短时间内增加到背景值的8倍以上,剧烈湍流混合过程导致了对流层上层的空气进入平流层,使下平流层空气出现了位势涡度和臭氧的低值区,在浮力频率的垂直剖面中也可以看到由于地形重力波过程造成的平流层下层浮力频率异常低值区.
文摘采用A-Train系列卫星的AURA/MLS水汽、温度资料,CALIPSO/CALIOP云物理资料,结合ECMWF气象再分析资料,分析了东亚地区云顶高于对流层顶事件(Cloud Top Above the Tropopause,CTAT)的区域分布,及其对上对流层—下平流层(Upper Troposphere and Lower Stratosphere,UTLS)水汽和温度结构的影响。结果表明:亚洲季风区的夏季CTAT发生率是30%~55%,为全球最强区域;东北亚的夏季CTAT发生率是15%~20%,为中纬度最强分布区。以CTAT为指标的合成结果表明:15~30°N的东亚—西太平洋UTLS,水汽呈"上干下湿"的异常分布,温度呈"上冷下暖"的异常分布,该结构与该区域热带气旋合成的结果一致,说明热带气旋是该区域CTAT形成的主要天气系统;35~50°N的东北亚UTLS,水汽呈"上干下湿"的异常分布,温度呈"上暖下冷"的异常分布,该结构与该区域温带气旋合成的结果一致,说明温带气旋是该区域CTAT形成的主要天气系统。