This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce th...This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations. The nonlinear prob- lem is solved by using the successive Taylor series linearization method (STSLM). The computations for velocity components are carried out for the emerging parameters. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.展开更多
In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the line...In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns.展开更多
A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential upper-convected Maxwell (UCM) fluid through a contraction channel has been chosen as a prototype example. Th...A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential upper-convected Maxwell (UCM) fluid through a contraction channel has been chosen as a prototype example. The conservation and constitutive equations are solved using the finite volume method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweep efficiency.展开更多
A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. Th...A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. The conservation and constitutive equations are solved using the Finite Volume Method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweeo efficiency.展开更多
文摘This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations. The nonlinear prob- lem is solved by using the successive Taylor series linearization method (STSLM). The computations for velocity components are carried out for the emerging parameters. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.
文摘In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns.
文摘A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential upper-convected Maxwell (UCM) fluid through a contraction channel has been chosen as a prototype example. The conservation and constitutive equations are solved using the finite volume method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweep efficiency.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2005CB221304)the Scientific Research Project of the Heilongjiang Education Department (Grant No.11521003)the Graduate Innovation Scientific Research Funds Project of Heilongjiang (Grant No.YJSCX2008-047HLJ)
文摘A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. The conservation and constitutive equations are solved using the Finite Volume Method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweeo efficiency.