The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Curren...With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Currently,single-node upset(SNU),double-node upset(DNU)and triple-node upset(TNU)caused by SE are relatively common.TNU’s solution is not yet fully mature.A novel and low-cost TNU self-recoverable latch(named NLCTNURL)was designed which is resistant to harsh radiation effects.When analyzing circuit resiliency,a double-exponential current source is used to simulate the flipping behavior of a node’s stored value when an error occurs.Simulation results show that the latch has full TNU self-recovery.A comparative analysis was conducted on seven latches related to TNU.Besides,a comprehensive index combining delay,power,area and self-recovery—DPAN index was proposed,and all eight types of latches from the perspectives of delay,power,area,and DPAN index were analyzed and compared.The simulation results show that compared with the latches LCTNURL and TNURL which can also achieve TNU self-recoverable,NLCTNURL is reduced by 68.23%and 57.46%respectively from the perspective of delay.From the perspective of power,NLCTNURL is reduced by 72.84%and 74.19%,respectively.From the area perspective,NLCTNURL is reduced by about 28.57%and 53.13%,respectively.From the DPAN index perspective,NLCTNURL is reduced by about 93.12%and 97.31%.The simulation results show that the delay and power stability of the circuit are very high no matter in different temperatures or operating voltages.展开更多
It is common for two teams or two players to play a game in which the first one to win a majority of the initially determined number of matches wins the championship. We will explore the probabilistic conditions under...It is common for two teams or two players to play a game in which the first one to win a majority of the initially determined number of matches wins the championship. We will explore the probabilistic conditions under which a team (or player) that is considered weak may win the championship over a team (or player) that is considered strong, or a game may go all the way to the end, creating excitement among fans. It is unlikely to occur if the initially estimated probability remains constant when the weaker one wins each game against the stronger one. The purpose of this study is to identify probabilistically what conditions are necessary to increase the probability of such an outcome. We examine probabilistically by quantifying momentum gains to see if momentum gains by a weaker team (or player) winning a series of games would increase the likelihood of such an outcome occurring. If the weaker one gains momentum by winning a series of games and the probability of winning the next game is greater than the initial probability, we can see that such a result will occur in this study. Especially when the number of games is limited to seven, the initial probability that a weaker one will beat a stronger one in each game must be 0.35 or higher in order to win the championship and excite the fans by having the game go all the way to the end.展开更多
AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite ele...AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite element analysis of the material flow indicates that deformation concentrates in the bottom region of the sample after 1 pass, and much more uniform deformation is obtained after 5 passes. During multi-pass RU process, both dendritic and Chinese script type Mg2Si phases are broken up into smaller particles owing to the shear stress forced by the matrix. With the increasing number of RU passes, finer grain size and more homogeneous distribution of Mg2Si particles are obtained along with significant enhancement in both strength and ductility. AZ31-4.6%Mg2Si composite exhibits tensile strength of 284 MPa and elongation of 9.8%after 5 RU passes at 400 ℃ compared with the initial 128 MPa and 5.4%of original AZ31-4.6%Mg2Si composite.展开更多
We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU ...We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU with multiple bit upset (MBU),and find that their characteristics are different. Methods to avoid MNU are also discussed.展开更多
Volatile organic compounds(VOC's) in air have become major concern in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polys...Volatile organic compounds(VOC's) in air have become major concern in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polystyrene particles using an acclimated mixed culture. The continuous performance of the biofilter was studied with different proportion of ethanol and methanol at different initial concentration and flow rates. The result showed significant removal for both ethanol and methanol, which were composition dependent. The presence of either compound in the mixture inhibited the biodegradation of the other.展开更多
Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4...Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ^(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.展开更多
Experimental evidence is presented relevant to the angular dependences of multiple-bit upset (MBU) rates and patterns in static random access memories (SRAMs) under heavy ion irradiation. The single event upset (...Experimental evidence is presented relevant to the angular dependences of multiple-bit upset (MBU) rates and patterns in static random access memories (SRAMs) under heavy ion irradiation. The single event upset (SEU) cross sections under tilted ion strikes are overestimated by 23.9%-84.6%, compared with under normally incident ion with the equivalent linear energy transfer (LET) value of 41 MeV/(mg/cm2), which can be partially explained by the fact that the MBU rate for tilted ions of 30° is 8.5%-9.8% higher than for normally incident ions. While at a lower LET of - 9.5 MeV/(mg/cm2), no clear discrepancy is observed. Moreover, since the ion trajectories at normal and tilted incidences are different, the predominant double-bit upset (DBU) patterns measured are different in both conditions. Those differences depend on the LET values of heavy ions and devices under test. Thus, effective LET method should be used carefully in ground-based testing of single event effects (SEE) sensitivity, especially in MBU-sensitive devices.展开更多
We investigate the impact of heavy ion irradiation on a hypothetical static random access memory (SRAM) device. Influences of the irradiation angle, critical charge, drain-drain spacing, and dimension of device stru...We investigate the impact of heavy ion irradiation on a hypothetical static random access memory (SRAM) device. Influences of the irradiation angle, critical charge, drain-drain spacing, and dimension of device structure on the device sensitivity have been studied. These prediction and simulated results are interpreted with MUFPSA, a Monte Carlo code based on Geant4. The results show that the orientation of ion beams and device with different critical charge exert indis- pensable effects on multiple-bit upsets (MBUs), and that with the decrease in spacing distance between adjacent cells or the dimension of the cells, the device is more susceptible to single event effect, especially to MBUs at oblique incidence.展开更多
Upset errors in 90-nm 64 Mb NOR-type floating-gate Flash memory induced by accelerated ^(129)Xe and ^(209)Bi ions are investigated in detail. The linear energy transfer covers the range from 50 to 99.8 Me V/(mg/c...Upset errors in 90-nm 64 Mb NOR-type floating-gate Flash memory induced by accelerated ^(129)Xe and ^(209)Bi ions are investigated in detail. The linear energy transfer covers the range from 50 to 99.8 Me V/(mg/cm^2). When the memory chips are powered off during heavy ions irradiation, single-event-latch-up and single-event-function-interruption are excluded,and only 0-〉1 upset errors in the memory array are observed. These error bit rates seem very difficult to achieve and cannot be simply recovered based on the power cycle. The number of error bits shows a strong dependence on the linear energy transfer(LET). Under room-temperature annealing conditions, the upset errors can be reduced by about two orders of magnitude using rewrite/reprogram operations, but they subsequently increase once again in a few minutes after the power cycle. High-temperature annealing can diminish almost all error bits, which are affected by the lower LET ^(129)Xe ions. The percolation path between the floating-gate(FG) and the substrate contributes to the radiation-induced leakage current, and has been identified as the root cause of the upset errors of the Flash memory array in this work.展开更多
The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This...The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.展开更多
Using computer-aided design three-dimensional (3D) simulation technology, the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied. It is found that the multi...Using computer-aided design three-dimensional (3D) simulation technology, the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied. It is found that the multi-node charge collection plays a key role in recovery and shielding the charge sharing by adding guard rings. It cannot exhibit the recovery effect. It is also indicated that the upset linear energy transfer (LET) threshold is kept constant while the recovery LET threshold increases as the spacing increases. Additionally, the effect of incident angle on recovery is analysed and it is shown that a larger angle can bring about a stronger charge sharing effect, thus strengthening the recovery ability.展开更多
The breakage mechanism of W-Ni-Fe alloy in the process of electro-heat upsetting studied both theoretically and experimetnally, and also the behaviors of crack formation and propagation were analysed. Alloy suffers fr...The breakage mechanism of W-Ni-Fe alloy in the process of electro-heat upsetting studied both theoretically and experimetnally, and also the behaviors of crack formation and propagation were analysed. Alloy suffers from corrosion and thermal-mechanical fatigue mutual function. Simultaneously, the practical ways to improve the anvil life was discussed.展开更多
The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the ...The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.展开更多
The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes...The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes increasing, the grains of the alloy are graduallyrefined and the hardness increases correspondingly. After ten passes of upsetting extrusionprocessing, the grain size decreases to less than 200 nm in diameter and the sample maintains itsoriginal shape, while the hardness is double owing to equal-axial ultrafine grains and workhardening effect caused by large plastic deformation.展开更多
The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with vo...The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with void were studied by this physical photoplasic simulation method. Some important informations obtained from the simulation experiment are helpful to understand the deformation law and the charac- teristics of material flowing.The validity of the physical simulation method and the importance of com- bining the physical simulation method with numerical simulation method together were proposed in the paper.展开更多
Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigate...Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated.It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing,which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design.Additionally,the effect of supply voltage on charge collection is also investigated.It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor(BJT) and the existence of the source plays an important role in supply voltage variation.展开更多
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t...A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.展开更多
To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upse...To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upset-resilient cells,which are identically mainly constructed from three mutually feeding back 2-input C-elements,the latch achieves double-node-upset-resilience.Using smaller transistor sizes,clock-gating technology,and high-speed transmission-path,the cost of the latch is effectively reduced.Simulation results demonstrate the double-node-upset-resilience of the latch and also show that compared with the up-to-date double-node-upset-resilient latches,the proposed latch reduces the transmission delay by 72.54%,the power dissipation by 33.97%,and the delay-power-area product by 78.57%,while the average cost of the silicon area is only increased by 16.45%.展开更多
Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diamete...Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
基金The Open Project Program of the Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems(2023SZKF17)the University Synergy Innovation Program of Anhui Province(GXXT-2022-080)。
文摘With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Currently,single-node upset(SNU),double-node upset(DNU)and triple-node upset(TNU)caused by SE are relatively common.TNU’s solution is not yet fully mature.A novel and low-cost TNU self-recoverable latch(named NLCTNURL)was designed which is resistant to harsh radiation effects.When analyzing circuit resiliency,a double-exponential current source is used to simulate the flipping behavior of a node’s stored value when an error occurs.Simulation results show that the latch has full TNU self-recovery.A comparative analysis was conducted on seven latches related to TNU.Besides,a comprehensive index combining delay,power,area and self-recovery—DPAN index was proposed,and all eight types of latches from the perspectives of delay,power,area,and DPAN index were analyzed and compared.The simulation results show that compared with the latches LCTNURL and TNURL which can also achieve TNU self-recoverable,NLCTNURL is reduced by 68.23%and 57.46%respectively from the perspective of delay.From the perspective of power,NLCTNURL is reduced by 72.84%and 74.19%,respectively.From the area perspective,NLCTNURL is reduced by about 28.57%and 53.13%,respectively.From the DPAN index perspective,NLCTNURL is reduced by about 93.12%and 97.31%.The simulation results show that the delay and power stability of the circuit are very high no matter in different temperatures or operating voltages.
文摘It is common for two teams or two players to play a game in which the first one to win a majority of the initially determined number of matches wins the championship. We will explore the probabilistic conditions under which a team (or player) that is considered weak may win the championship over a team (or player) that is considered strong, or a game may go all the way to the end, creating excitement among fans. It is unlikely to occur if the initially estimated probability remains constant when the weaker one wins each game against the stronger one. The purpose of this study is to identify probabilistically what conditions are necessary to increase the probability of such an outcome. We examine probabilistically by quantifying momentum gains to see if momentum gains by a weaker team (or player) winning a series of games would increase the likelihood of such an outcome occurring. If the weaker one gains momentum by winning a series of games and the probability of winning the next game is greater than the initial probability, we can see that such a result will occur in this study. Especially when the number of games is limited to seven, the initial probability that a weaker one will beat a stronger one in each game must be 0.35 or higher in order to win the championship and excite the fans by having the game go all the way to the end.
基金Projects(51074106,51374145)supported by the National Natural Science Foundation of ChinaProject(09JC1408200)supported by the Science and Technology Commission of Shanghai Municipality,China+1 种基金Project(2014M561466)supported by China Postdoctoral Science FoundationProject(14R21411000)supported by Shanghai Postdoctoral Scientific Program,China
文摘AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite element analysis of the material flow indicates that deformation concentrates in the bottom region of the sample after 1 pass, and much more uniform deformation is obtained after 5 passes. During multi-pass RU process, both dendritic and Chinese script type Mg2Si phases are broken up into smaller particles owing to the shear stress forced by the matrix. With the increasing number of RU passes, finer grain size and more homogeneous distribution of Mg2Si particles are obtained along with significant enhancement in both strength and ductility. AZ31-4.6%Mg2Si composite exhibits tensile strength of 284 MPa and elongation of 9.8%after 5 RU passes at 400 ℃ compared with the initial 128 MPa and 5.4%of original AZ31-4.6%Mg2Si composite.
文摘We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU with multiple bit upset (MBU),and find that their characteristics are different. Methods to avoid MNU are also discussed.
文摘Volatile organic compounds(VOC's) in air have become major concern in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polystyrene particles using an acclimated mixed culture. The continuous performance of the biofilter was studied with different proportion of ethanol and methanol at different initial concentration and flow rates. The result showed significant removal for both ethanol and methanol, which were composition dependent. The presence of either compound in the mixture inhibited the biodegradation of the other.
基金supported by the Fundamental Research Funds for the Central Universities(No.HIT.KISTP.201404)Harbin science and innovation research special fund(No.2015RAXXJ003)Special fund for development of Shenzhen strategic emerging industries(No.JCYJ20150625142543456)
文摘Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ^(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,and 11005134)
文摘Experimental evidence is presented relevant to the angular dependences of multiple-bit upset (MBU) rates and patterns in static random access memories (SRAMs) under heavy ion irradiation. The single event upset (SEU) cross sections under tilted ion strikes are overestimated by 23.9%-84.6%, compared with under normally incident ion with the equivalent linear energy transfer (LET) value of 41 MeV/(mg/cm2), which can be partially explained by the fact that the MBU rate for tilted ions of 30° is 8.5%-9.8% higher than for normally incident ions. While at a lower LET of - 9.5 MeV/(mg/cm2), no clear discrepancy is observed. Moreover, since the ion trajectories at normal and tilted incidences are different, the predominant double-bit upset (DBU) patterns measured are different in both conditions. Those differences depend on the LET values of heavy ions and devices under test. Thus, effective LET method should be used carefully in ground-based testing of single event effects (SEE) sensitivity, especially in MBU-sensitive devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179003, 10975164, 10805062, and 11005134)
文摘We investigate the impact of heavy ion irradiation on a hypothetical static random access memory (SRAM) device. Influences of the irradiation angle, critical charge, drain-drain spacing, and dimension of device structure on the device sensitivity have been studied. These prediction and simulated results are interpreted with MUFPSA, a Monte Carlo code based on Geant4. The results show that the orientation of ion beams and device with different critical charge exert indis- pensable effects on multiple-bit upsets (MBUs), and that with the decrease in spacing distance between adjacent cells or the dimension of the cells, the device is more susceptible to single event effect, especially to MBUs at oblique incidence.
基金Project supported by the National Natural Science Foundation of China(Grant No.616340084)the Youth Innovation Promotion Association of CAS(Grant No.2014101)+1 种基金the International Cooperation Project of CASthe Austrian-Chinese Cooperative R&D Projects(Grant No.172511KYSB20150006)
文摘Upset errors in 90-nm 64 Mb NOR-type floating-gate Flash memory induced by accelerated ^(129)Xe and ^(209)Bi ions are investigated in detail. The linear energy transfer covers the range from 50 to 99.8 Me V/(mg/cm^2). When the memory chips are powered off during heavy ions irradiation, single-event-latch-up and single-event-function-interruption are excluded,and only 0-〉1 upset errors in the memory array are observed. These error bit rates seem very difficult to achieve and cannot be simply recovered based on the power cycle. The number of error bits shows a strong dependence on the linear energy transfer(LET). Under room-temperature annealing conditions, the upset errors can be reduced by about two orders of magnitude using rewrite/reprogram operations, but they subsequently increase once again in a few minutes after the power cycle. High-temperature annealing can diminish almost all error bits, which are affected by the lower LET ^(129)Xe ions. The percolation path between the floating-gate(FG) and the substrate contributes to the radiation-induced leakage current, and has been identified as the root cause of the upset errors of the Flash memory array in this work.
基金supported by the National Natural Science Foundation of China(Grant No.60776034)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.
基金supported by the State Key Program of the National Natural Science Foundation of China (Grant No.60836004)the National Natural Science Foundation of China (Grant Nos.61076025 and 61006070)
文摘Using computer-aided design three-dimensional (3D) simulation technology, the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied. It is found that the multi-node charge collection plays a key role in recovery and shielding the charge sharing by adding guard rings. It cannot exhibit the recovery effect. It is also indicated that the upset linear energy transfer (LET) threshold is kept constant while the recovery LET threshold increases as the spacing increases. Additionally, the effect of incident angle on recovery is analysed and it is shown that a larger angle can bring about a stronger charge sharing effect, thus strengthening the recovery ability.
文摘The breakage mechanism of W-Ni-Fe alloy in the process of electro-heat upsetting studied both theoretically and experimetnally, and also the behaviors of crack formation and propagation were analysed. Alloy suffers from corrosion and thermal-mechanical fatigue mutual function. Simultaneously, the practical ways to improve the anvil life was discussed.
基金This work was financially supported by the National Natural Science Foundation of China (No.50465003).
文摘The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.
基金This project is financially supported by the Natural Science Foundation (No. E5305293) of South China University of Technology.
文摘The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes increasing, the grains of the alloy are graduallyrefined and the hardness increases correspondingly. After ten passes of upsetting extrusionprocessing, the grain size decreases to less than 200 nm in diameter and the sample maintains itsoriginal shape, while the hardness is double owing to equal-axial ultrafine grains and workhardening effect caused by large plastic deformation.
文摘The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with void were studied by this physical photoplasic simulation method. Some important informations obtained from the simulation experiment are helpful to understand the deformation law and the charac- teristics of material flowing.The validity of the physical simulation method and the importance of com- bining the physical simulation method with numerical simulation method together were proposed in the paper.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Hunan Provincial Innovation Foundation for Postgraduates,China (Grant No. CX2011B026)
文摘Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated.It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing,which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design.Additionally,the effect of supply voltage on charge collection is also investigated.It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor(BJT) and the existence of the source plays an important role in supply voltage variation.
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.
基金The National Natural Science Foundation of China(No.61604001)the Doctor Startup Fund of Anhui University(No.J01003217)
文摘To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upset-resilient cells,which are identically mainly constructed from three mutually feeding back 2-input C-elements,the latch achieves double-node-upset-resilience.Using smaller transistor sizes,clock-gating technology,and high-speed transmission-path,the cost of the latch is effectively reduced.Simulation results demonstrate the double-node-upset-resilience of the latch and also show that compared with the up-to-date double-node-upset-resilient latches,the proposed latch reduces the transmission delay by 72.54%,the power dissipation by 33.97%,and the delay-power-area product by 78.57%,while the average cost of the silicon area is only increased by 16.45%.
基金National Natural Science Foundation of China(No.59235101)
文摘Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.