期刊文献+
共找到5,031篇文章
< 1 2 250 >
每页显示 20 50 100
Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method 被引量:9
1
作者 Beiji SHI Xiaolei YANG +2 位作者 Guodong JIN Guowei HE Shizhao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第3期305-320,共16页
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ... A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results. 展开更多
关键词 wall model large-eddy simulation(LES) immersed boundary(IB)method diffuse-interface
下载PDF
Meshless Method for Analysis of Permeable Breakwaters in the Proximity of A Vertical Wall 被引量:7
2
作者 Nadji CHIOUKH Karim OUAZZANE +2 位作者 Yal??n YüKSEL Benameur HAMOUDI Esin ?EVIK 《China Ocean Engineering》 SCIE EI CSCD 2019年第2期148-159,共12页
In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves... In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves and in the proximity of a vertical wall. Both single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with appropriate mixed type boundary conditions, and solved numerically using the ISBM. To model the permeability of the breakwaters fully absorbing boundary conditions are assumed. Numerical results are presented in terms of hydrodynamic quantities of the reflection coefficients. These are firstly validated against the results of a multi-domain boundary element method(BEM) developed independently for a previous study. The agreement between the results of the two methods is excellent. The coefficients of reflection are then computed and discussed for a variety of structural conditions including the breakwaters height, width, spacing, and absorbing permeability. Effects of the proximity of the vertical plane wall are also investigated. The breakwater's width is found to have only marginal effects compared with its height. Permeability tends to decrease the minimum reflections. These coefficients show periodic variations with the spacing relative to the wavelength. Trapezoidal breakwaters are found to be more cost-effective than the rectangular breakwaters. Dual breakwater systems are confirmed to perform much better than single structures. 展开更多
关键词 MESHLESS improved SINGULAR boundary method REGULAR normal waves rectangular and trapezoidal BREAKWATERS permeability vertical wall reflection
下载PDF
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
3
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
Similarity solutions of vertical plane wall plume based on finite analytic method 被引量:1
4
作者 槐文信 曾玉红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第4期447-454,共8页
The turbulent flow of vertical plane wall plume with concentration variation was studied with the finite analytical method. The k-epsilon model with the effect of buoyancy on turbulent kinetic energy and its dissipati... The turbulent flow of vertical plane wall plume with concentration variation was studied with the finite analytical method. The k-epsilon model with the effect of buoyancy on turbulent kinetic energy and its dissipation rate was adopted. There were similarity solutions in the uniform environment for the system of equations including the equation of continuity, the equation of momentum along the flow direction and concentration, and equations of k, epsilon. The finite analytic method was applied to obtain the similarity solution. The calculated data of velocity, relative density difference, the kinetic energy of turbulence and its dissipation rate distribution for vertical plane plumes are in good agreement with the experimental data at the turbulent Schmidt number equal to 1.0. The variations of their maximum value along the direction of main flow were also given. It shows that the present model is good, i.e., the effect of buoyancy on turbulent kinetic energy and its dissipation rate should be taken into account, and the finite analytic method is effective. 展开更多
关键词 wall plume SIMILARITY turbulence model finite analytic method buoyancy effect
下载PDF
Shortcut Method of Design and Energy-Saving Analysis of Sargent Dividing Wall Column 被引量:1
5
作者 Fang Jing Cheng Xiaomin +2 位作者 Li Xiaochun Xiang Ning Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第4期99-108,共10页
The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimizat... The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimization or dynamic control of the Sargent dividing wall column, and in order to make the rigorous simulation of the Sargent dividing wall column more conducive to convergence, a ten column model for complex Sargent column is established in this paper,and the shortcut design method of this model is proposed. The internal minimum vapor and liquid flow are obtained by the Underwood equations and the mass balance method and the V-min method. The separation for a 4-component shortcut mixture of pentane, hexane, heptane and octane was considered, while the initial values of design parameters and the ratio of vapor-liquid distribution of each column were calculated by using the shortcut design method of a ten column model. And by comparing the shortcut calculations with rigorous simulation results, the practicality and reliability of shortcut calculations were verified. The reason for energy saving was analyzed based on back-mixing. A virtual heat exchanger is proposed to make the Sargent dividing wall column more energy efficient. 展开更多
关键词 Sargent dividing wall COLUMN shortcut design method energy SAVING VIRTUAL HEAT EXCHANGERS
下载PDF
THE ANALYSIS OF THIN WALLED COMPOSITE LAMINATED HELICOPTER ROTOR WITH HIERARCHICAL WARPING FUNCTIONS AND FINITE ELEMENT METHOD 被引量:1
6
作者 诸德超 邓忠民 王荇卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第3期258-268,共11页
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single clos... In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free beading as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method. is introduced to form a,. numerical algorithm. Both static and natural vibration problems of sample box beams axe analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor. 展开更多
关键词 warping function composite laminate thin walled box beam helicopter rotor hierarchical finite element method
下载PDF
Seismic performance evaluation of steel frame-steel plate shear walls system based on the capacity spectrum method 被引量:3
7
作者 Jian-hua SHAO Qiang GU Yong-kang SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期322-329,共8页
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the... This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested. 展开更多
关键词 Steel frame-steel plate shear walls (SPSW) system Capacity spectrum method (CSM) Seismic demand spectrum Base shear force-roof displacement Seismic performance evaluation
下载PDF
Numerical simulation on the seismic performance of retrofitted masonry walls based on the combined finite-discrete element method 被引量:1
8
作者 Wu Biye Dai Junwu +2 位作者 Jin Huan Bai Wen Chen Bowen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期777-805,共29页
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us... Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting. 展开更多
关键词 masonry wall external steel-meshed mortar layer combined finite-discrete element method hysteretic curve ultimate bearing capacity
下载PDF
A New Method for Measuring the Wall Charge Waveforms of AC PDP
9
作者 梁志虎 刘祖军 刘纯亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第6期2567-2570,共4页
A new method is developed to measure the wall charge waveforms in coplanar alternating current plasma display panel (AC PDP). In the method, two groups of display electrodes are selected from a coplanar AC PDP and two... A new method is developed to measure the wall charge waveforms in coplanar alternating current plasma display panel (AC PDP). In the method, two groups of display electrodes are selected from a coplanar AC PDP and two capacitors are respectively connected with these two groups of display electrodes in series, and a measuring circuit and a reference circuit are thus constructed. With the help of special processing, discharge takes place in the cells included in the measuring circuit under a normal drive voltage but no discharge takes place in the cells included in the reference circuit under a normal drive voltage. The wall charge waveforms are obtained from the voltage difference between the two capacitors. Using the method, the wall charge waveforms are measured during resetting period, addressing period and sustaining period for the 304.8mm (12-inch) test PDP panel. The result shows that the wall voltage is about 96V during the sustaining period. 展开更多
关键词 plasma display panel wall charge measuring method
下载PDF
A Numerical-analytic Method for Quickly Predicting Springback of Numerical Control Bending of Thin-walled Tube 被引量:3
10
作者 Mei ZHAN He YANG Liang HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期713-720,共8页
Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process... Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process was put forward. The method is based on springback angle model derived using analytic method and simulation results from three-dimensional (3D) rigid-plastic finite element method (FEM). The method is validated through comparison with experimental results. The features of the method are as follows: (1) The method is high in efficiency because it combines advantages of rigid-plastic FEM and analytic method. (2) The method is satisfactory in accuracy, since the field variables used in the model is resulting from 3D rigid-plastic FEM solution, and the effects both of axial force and strain neutral axis shift have been included. (3) Research on multi-factor effects can be carried out using the method due to its advantage inheriting from rigid-plastic FEM. The method described here is also of general significance to other bending processes. 展开更多
关键词 Thin-walled tube Numerical control bending SPRINGBACK Numerical-analytic method 3D rigid-plastic FEM
下载PDF
Impedance Analytical Method of Wave Run-up and Reflection from A Slotted-Wall Caisson Breakwater 被引量:3
11
作者 朱大同 《China Ocean Engineering》 SCIE EI 2010年第3期453-465,共13页
An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f... An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers. 展开更多
关键词 plane wave slotted-wall caisson wave reflection wave run-up impedance analytical method (IAM)
下载PDF
Modelling of URM Walls Retrofitted with Cable: A Comparison Between a Basic Mechanical Model and Distinct Element Method
12
作者 ZHUGE Yan CHUANG Shihwei 《Transactions of Tianjin University》 EI CAS 2006年第B09期171-176,共6页
The Australian love of 'heritage' buildings (most of them are unreinforced masonry (URM)) means that greater attention is required to secure their performance under seismic or impact loading in the future. A r... The Australian love of 'heritage' buildings (most of them are unreinforced masonry (URM)) means that greater attention is required to secure their performance under seismic or impact loading in the future. A research project has been carried out to develop a new, economic and high strength retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. In this paper, an analytical model which is based on distinct element method (DEM) is developed to simulate the behaviour of retrofitted walls. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. In order to assist the practising engineers to design this new retrofitted wall system, a simple mechanical model was also developed to predict the strength of the retrofitted walls. The results obtained from this simple mechanical model are compared with those from both experiments and distinct element model. 展开更多
关键词 unreinforced masonry walls retrofitting CABLE distinct element method
下载PDF
Seismic analysis of cantilever earth retaining walls embedded in dry sand by simplified approaches and finite element method
13
作者 FERRO Edgar OSS Andrea SIMEONI Lucia 《岩土力学》 EI CAS CSCD 北大核心 2022年第6期1617-1634,共18页
In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently dev... In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently developed pseudostatic methods provide earth stresses and internal forces,even in those cases in which the strength of the soil surrounding the structure is not entirely mobilised.Semiempirical correlations or Newmark sliding block method provide an estimate of earthquake-induced permanent displacements.However,the use of these methods is hindered by uncertainties in the evaluation of a few input parameters,affecting the reliability of the methods.This study uses 1 D site response analyses and 2 D fully-dynamic finite element analyses to show that simplified methods can provide a reasonable estimate of the maximum bending moment and permanent displacements for stiff cantilever walls embedded in uniform sand,providing that a few input parameters are evaluated through semiempirical correlations and a simple 1 D site response analysis. 展开更多
关键词 embedded retaining wall seismic design finite elements pseudostatic methods NEWMARK permanent displacement
下载PDF
Thermal Analysis of Turbine Blades with Thermal Barrier Coatings Using Virtual Wall Thickness Method
14
作者 Linchuan Liu Jian Wu +4 位作者 Zhongwei Hu Xiaochao Jin Pin Lu Tao Zhang Xueling Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1219-1236,共18页
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho... Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively. 展开更多
关键词 Turbine blade thermal analysis thermal barrier coatings finite element method virtual wall thickness
下载PDF
Development of New Methodology for Distinguishing Local Pipe Wall Thinning in Nuclear Power Plants
15
作者 Kyeong Mo Hwang Hun Yun Chan Kyoo Lee 《World Journal of Nuclear Science and Technology》 2012年第4期192-199,共8页
To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during every refueling outage and determined whe... To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during every refueling outage and determined whether repair or replacement after evaluating UT data. Generally used UT thickness data evaluation methods are Band, Blanket, and PTP (Point to Point) methods. Those may not desirable to identify wall thinning on local area caused by erosion. This is because the space between inspecting points of those methods are wide for covering full surface being inspected components. When the evaluation methods are applied to a certain pipe component, unnecessary re-inspection may also be generated even though wall thinning of components does not progress. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing the number of newly inspected components may be generated. EPRI (Electric Power Research Institute in USA) has suggested several statistical methods such as FRIEDMAN test method, ANOVA (Analysis of Variance) method, Monte Carlo method, and TPM (Total Point Method) to distinguish whether multiple inspecting components have been thinned or not. This paper presents the NAM (Near Area of Minimum) method developed by KEPCO-E & C for distinguishing whether multiple inspecting components have been thinned or not. In addition, this paper presents the analysis results for multiple inspecting ones over three times based on the NAM method compared with the other methods suggested by EPRI. 展开更多
关键词 Pipe wall THINNING Component Multiple Inspection ANOVA-1 method TPM (Total Point method) NAM (Near Area of Minimum) method
下载PDF
Controlling Methods and Causes of Wall Cracks of Civil and Industrial Construction Projects
16
作者 Zhiqi Guan 《Journal of World Architecture》 2020年第6期19-21,共3页
Since the reform and opening up,Chinese economy has developed rapidly.Industrial and civil construction projects have made significant progress.That said,it is of great significance to further strengthen the construct... Since the reform and opening up,Chinese economy has developed rapidly.Industrial and civil construction projects have made significant progress.That said,it is of great significance to further strengthen the construction management of industrial and civil construction projects for the longterm development of construction industry in China.In terms of reality,one of the common problems in the current industrial and civil construction is wall cracks,which will have an important impact on the appearance of the building and the overall construction quality.Therefore,it is necessary to analyze the reasons and put forward corresponding measures on it.That is how we can continuously improve the construction quality in civil and industrial construction projects,thereby achieving the enhancement of building safety and stability. 展开更多
关键词 Industrial and civil construction projects wall cracks CAUSES Control methods
下载PDF
Transverse Vibration Analysis of Single-Walled Carbon Nanotubes Embedded in an Elastic Medium Using Bernoulli-Fourier Method 被引量:1
17
作者 Thin-Lin Horng 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第3期203-209,共7页
Based on the Timoshenko beam theory and Bernoulli-Fourier method, a single-elastic beam model is developed for transverse vibrations of single-walled carbon nanotubes under additional axial load, which includes the ef... Based on the Timoshenko beam theory and Bernoulli-Fourier method, a single-elastic beam model is developed for transverse vibrations of single-walled carbon nanotubes under additional axial load, which includes the effects of the elastic medium around them. Explicit expressions are derived for the natural frequencies and transversal responses of simply supported single-walled carbon nanotubes. The influence of addition axial load and the properties of elastic medium on the vibrations are discussed. The results showed that the effects of addition axial load on the lower natural frequencies of single-walled carbon nanotubes are sensitive to the lower vibration modes and the stiff elastic medium. The lower natural frequencies depend on the axial load;they become smaller with increasing axial load and vary with the vibration modes. In addition, except for the first mode, the effects of the axial load on the stiff elastic medium are considerably greater than those on the flexible one. However, the constants of the elastic medium have little effect on the first mode. The critical axial buckling stress and strain for simply-supported single-walled carbon nanotubes are also obtained. 展开更多
关键词 Transverse Vibration TIMOSHENKO Beam model Elastic Media SINGLE-wallED Carbon NANOTUBES Bernoulli-Fourier method
下载PDF
Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq
18
作者 Ahmed Mustaffa Saleem Abdullah A.Badr +1 位作者 Bahjat Hassan Alyas Omar Rafae Alomar 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1231-1244,共14页
This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.T... This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them. 展开更多
关键词 Thermal insulation energy gain composites walls and roofs heat flux transmission matrix method
下载PDF
Initial residual stress experiment and simulation of thin-walled parts for layer removal method
19
作者 刘宇男 Wang Min +2 位作者 Zan Tao Gao Xiangsheng Zhang Yanlin 《High Technology Letters》 EI CAS 2018年第1期75-81,共7页
Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial r... Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial residual stress measurement of layer removal method. According to initial residual stress experiment for casting ZL205 A aluminum alloy tapered thin-walled blank by a common method,namely hole-drilling method,three finite element models with initial residual stress are established to simulate the layer removal method in ABAQUS and ANSYS software. By analyzing the results of simulation and experiments,the cutting residual stress inlayer removal process has a significant effect on measurement results. Reducing cutting residual stress is helpful to improve accuracy of layer removal method. 展开更多
关键词 INITIAL RESIDUAL stress THIN-wallED PARTS layer.removal method FINITE element
下载PDF
Powell's optimal identification of material constants of thin-walled box girders based on Fibonacci series search method
20
作者 张剑 叶见曙 周储伟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第1期97-106,共10页
A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fi... A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies. 展开更多
关键词 Powell's theory thin-walled curve box material constant Fibonacci seriessearch method finite curve strip element theory
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部