期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Variation of Nitrogen Uptake and Utilization Efficiency of Mid-Season Hybrid Rice at Different Ecological Sites under Different Nitrogen Application Levels 被引量:3
1
作者 徐富贤 熊洪 +4 位作者 张林 郭晓艺 朱永川 周兴兵 刘茂 《Agricultural Science & Technology》 CAS 2011年第7期1001-1009,1012,共10页
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut... [Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation. 展开更多
关键词 Mid-season hybrid rice Ecological site Soil chemical characteristics Nitrogen application level Nitrogen uptake and utilization efficiency
下载PDF
Synthesis of NaYF_(4):20% Yb^(3+),2% Er^(3+),2% Ce^(3+)@NaYF_(4) nanorods and their size dependent uptake efficiency under flow condition 被引量:1
2
作者 Dongmei Qiu Jie Hu +6 位作者 Peiyuan Wang Decai Huang Yaling Lin Haina Tian Xiaodong Yi Qilin Zou Haomiao Zhu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第10期1519-1526,共8页
Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications.However,the low uptake efficiency of nanoparticles by cells has limited their applications.In this work,we demon... Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications.However,the low uptake efficiency of nanoparticles by cells has limited their applications.In this work,we demonstrate how the uptake efficiency is affected by the size of nanoparticles under flow conditions.Using the same size NaYF_(4):20%Yb^(3+),2%Er^(3+),2%Ce^(3+)(the contents of rare earths elements are in molar fraction)nanoparticles as core,NaYF_(4):20%Yb^(3+),2%Er^(3+),2%Ce^(3+)@NaYF_(4) core-shell structured nanorods(NRs)with different sizes of 60-224 nm were synthesized by thermal decomposition and hot injection method.Under excitation at 980 nm,a strong upconversion green emission(541 nm,^(2)H_(11/2)→^(4) I_(15/2) of Er^(3+))is observed for all samples.The emission intensity for each size nanorod was calibrated and is found to depend on the width of NRs.Under flow conditions,the nanorods with 96 nm show a maximum uptake efficiency by endothelial cells.This work demonstrates the importance of optimizing the size for improving the uptake efficiency of lanthanide-doped nanoparticles. 展开更多
关键词 uptake efficiency Endothelial cells Upconversion luminescence Cell imaging Rare earths
原文传递
Potassium nutrition of maize:Uptake,transport,utilization,and role in stress tolerance 被引量:2
3
作者 Meiling Zhang Yingying Hu +3 位作者 Wu Han Jian Chen Jinsheng Lai Yi Wang 《The Crop Journal》 SCIE CSCD 2023年第4期1048-1058,共11页
Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,althoug... Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement. 展开更多
关键词 MAIZE POTASSIUM CHANNEL TRANSPORTER K uptake/utilization efficiency
下载PDF
Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat 被引量:6
4
作者 XU Hai-cheng DAI Xing-long +5 位作者 CHU Jin-peng WANG Yue-chao YIN Li-jun MA Xin DONG Shu-xin HE Ming-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期315-327,共13页
Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management... Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management strategies was conducted from 2013 to 2015 in Tai'an, Shandong Province, China, to evaluate changes in grain yield and NUE. The integrated management treatments were as follows: current practice(T1); improvement of current practice(T2); high-yield management(T3), which aimed to maximize grain yield regardless of the cost of resource inputs; and integrated soil and crop system management(T4) with a higher seeding rate, delayed sowing date, and optimized nutrient management. Seeding rates increased by 75 seeds m^-2 with each treatment from T1(225 seeds m^-2) to T4(450 seeds m^-2). The sowing dates were delayed from T1(5 th Oct.) to T2 and T3(8 th Oct.), and to T4 treatment(12 th Oct.). T1, T2, T3, and T4 received 315, 210, 315, and 240 kg N ha^-1, 120, 90, 210 and 120 kg P2O5 ha^-1, 30, 75, 90, and 45 kg K2O ha^-1, respectively. The ratio of basal application to topdressing for T1, T2, T3, and T4 was 6:4, 5:5, 4:6, and 4:6, respectively, with the N topdressing applied at regreening for T1 and at jointing stage for T2, T3, and T4. The P fertilizers in all treatments were applied as basal fertilizer. The K fertilizer for T1 and T2 was applied as basal fertilizer while the ratio of basal application to topdressing(at jointing stage) of K fertilizer for both T3 and T4 was 6:4. T1, T2, T3, and T4 were irrigated five, four, four and three times, respectively. Treatment T3 produced the highest grain yield among all treatments over three years and the average yield was 9 277.96 kg ha^-1. Grain yield averaged across three years with the T4 treatment(8 892.93 kg ha^-1) was 95.85% of that with T3 and was 21.72 and 6.10% higher than that with T1(7 305.95 kg ha^-1) and T2(8 381.41 kg ha^-1), respectively. Treatment T2 produced the highest NUE of all the integrated treatments. The NUE with T4 was 95.36% of that with T2 and was 51.91 and 25.62% higher than that with T1 and T3, respectively. The N uptake efficiency(UPE) averaged across three years with T4 was 50.75 and 16.62% higher than that with T1and T3, respectively. The N utilization efficiency(UTE) averaged across three years with T4 was 7.74% higher than that with T3. The increased UPE with T4 compared with T3 could be attributed mostly to the lower available N in T4, while the increased UTE with T4 was mainly due to the highest N harvest index and low grain N concentration, which consequently led to improved NUE. The net profit for T4 was the highest among four treatments and was 174.94, 22.27, and 28.10% higher than that for T1, T2, and T3, respectively. Therefore, the T4 treatment should be a recommendable management strategy to obtain high grain yield, high NUE, and high economic benefits in the target region, although further improvements of NUE are required. 展开更多
关键词 integrated management strategy grain yield winter wheat nitrogen use efficiency nitrogen uptake efficiency nitrogen utilization efficiency
下载PDF
Review grain yield and nitrogen use efficiency in rice production regions in China 被引量:14
5
作者 CHE Sheng-guo ZHAO Bing-qiang +5 位作者 LI Yan-ting YUAN Liang LI Wei LIN Zhi-an HU Shu-wen SHEN Bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2456-2466,共11页
As one of the staple food crops, rice(Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use ... As one of the staple food crops, rice(Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency(NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index(HIN), indigenous N supply(INS), internal N efficiency(IE_N), reciprocal internal N efficiency(RIE_N), agronomic N use efficiency(AE_N), partial N factor productivity(PEPN), physiological N efficiency(PE_N), and recover efficiency of applied N(RE_N) averaged 7.69 t ha^(–1), 152 kg ha^(–1), 0.64 kg kg^(–1), 94.1 kg kg^(–1), 53.9 kg kg^(–1), 1.98 kg kg^(–1), 12.6 kg kg^(–1), 48.6 kg kg^(–1), 33.8 kg kg^(–1), and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha^(–1) commonly achieved higher rice grain yield compared to less than 200 kg N ha^(–1) and more than 250 kg N ha^(–1) at most rice planting regions. At N rates of 200 to 250 kg ha^(–1), significant positive linear relationships were observed between rice grain yield and AE_N, PE_N, RE_N, IE_N, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AE_N, PE_N, RE_N, IE_N, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE. 展开更多
关键词 rice grain yield nitrogen uptake nitrogen use efficiency China
下载PDF
Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil 被引量:4
6
作者 Thangavelu Muthukumar Karuthamuthu Udaiyan 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期660-670,共11页
We conducted a study to find out if arbuscular mycorrhizal(AM) fungi(Acaulospora scrobiculata,Scutellospora calospora) and phosphate solubilizing bacteria(PSB, Paenibacillus polymyxa) inoculation either individually o... We conducted a study to find out if arbuscular mycorrhizal(AM) fungi(Acaulospora scrobiculata,Scutellospora calospora) and phosphate solubilizing bacteria(PSB, Paenibacillus polymyxa) inoculation either individually or in combinations can improve Acacia auriculiformis seedling growth, uptake of nutrients and quality in a phosphorus deficient tropical Alfisol. The seedlings were assessed for various growth and nutrient uptake parameters after 60 days of treatment. Inoculation with P.polymyxa stimulated mycorrhizal formation. Seedling height, stem girth, taproot length, number of leaves and leaf area, plant dry matter production, nodulation, and nodular dry weight were significantly higher for seedlings that were either dual inoculated or triple inoculated compared to individual inoculation of AM fungi or PSB, and uninoculated seedlings. Dual and triple application of AM fungi and PSB also significantly improved the nutrient contents of shoots and roots and nutrient uptake efficiencies. The calculated seedling quality indexes of the AM fungi and PSB inoculated seedling were 25–208% higher than uninoculated seedlings. These findings show that A.auriculiformis seedlings when dual inoculated or triple inoculated performed better than seedlings inoculated with the microbes individually and compared with uninoculated control seedlings. We conclude that bioinoculation is important for the production of high-quality A.auriculiformis seedlings in tree nurseries for planting in nutrient deficient soils. 展开更多
关键词 Arbuscular mycorrhizal fungi Nutrient uptake efficiency Paenibacillus polymyxa Relative field mycorrhizal dependency Seedling quality
下载PDF
Function, transport, and regulation of amino acids: What is missing in rice? 被引量:3
7
作者 Nan Guo Shunan Zhang +1 位作者 MingjiGu Guohua Xu 《The Crop Journal》 SCIE CSCD 2021年第3期530-542,共13页
Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate redu... Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate reduction,and ammonium assimilation.Many amino acid transporters(AATs)mediating transfer processes of amino acids have been functionally characterized in Arabidopsis,whereas the function and regulation of the vast majority of AATs in rice(Oryza sativa L.)and other crops remain unknown.In this review,we summarize the current understanding of amino acids in the rhizosphere and in metabolism.We describe their function as signal molecules and in regulating plant architecture,flowering time,and defense against abiotic stress and pathogen attack.AATs not only function in root acquisition and translocation of amino acids from source to sink organs,regulating N uptake and use efficiency,but also as transporters of non-amino acid substrates or as amino acid sensors.Several AAT genes show natural variations in their promoter and coding regions that are associated with altered uptake rate of amino acids,grain N content,and tiller number.Development of an amino acid transfer model in plants will advance the manipulation of AATs for improving rice architecture,grain yield and quality,and N-use efficiency. 展开更多
关键词 Amino acids Amino acid transporter Grain quality Nitrogen uptake efficiency Nitrogen utilization efficiency Rice architecture
下载PDF
Carbon Dioxide Concentrations and Light Levels on Growth and Mineral Nutrition of Juvenile Cacao Genotypes
8
作者 Virupax C. Baligar Marshall K. Elson +3 位作者 Alex-Alan F. Almeida Quintino R. de Araujo Dario Ahnert Zhenli He 《American Journal of Plant Sciences》 2021年第5期818-839,共22页
In many countries cacao (</span><i><span style="font-family:Verdana;">Theobroma cacao</span></i><span style="font-family:Verdana;"> L.) is invariably grown as an... In many countries cacao (</span><i><span style="font-family:Verdana;">Theobroma cacao</span></i><span style="font-family:Verdana;"> L.) is invariably grown as an understory crop in agroforestry types of cropping systems and subjected to low levels photosynthetic photon flux density (PPFD) due to presence of large number of upper story shade trees with poorly managed canopy structure. In recent years carbon dioxide concentration in the atmosphere is steadily increasing and it is unclear what impact this will have on performance of cacao grown under shade of upper story shade trees. A climatically controlled greenhouse experiment was undertaken to evaluate the effects of ambient and elevated carbon dioxide (400 and 700 μmol&middot;mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) and three levels of PPFD (100, 200, and 400 μmol&middot;m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">&middot;s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">) on growth, and macro- and micronutrient use efficiency of three genetically contrasting cacao genotypes (CCN 51, VB 1117 and NO 81). Intraspecific variations were observed in cacao genotypes for growth parameters at ambient to elevated carbon dioxide and low to adequate levels of PPFD. With the exceptions of total root length and leaf area, irrespective of carbon dioxide and PPFD levels, all three genotypes showed significant differences in all the growth parameters. For all the cacao genotypes, increasing PPFD from 100 to 400 μmol&middot;m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">&middot;s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> and carbon dioxide from 400 to 700 μmol&middot;mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> increased overall growth parameters such as leaf, shoot and root biomass accumulation, stem height, leaf area, relative growth rate and net assimilation rate. Irrespective of carbon dioxide and PPFD, invariably genotypes differed significantly in macro-micronutrient uptake parameters such as concentration, uptake, influx, transport and use efficiency. With few exceptions, raising PPFD from 100 to 400 μmol&middot;m</span><sup><span style="font-family:Verdana;">-2</span></sup><span style="font-family:Verdana;">&middot;s</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> and carbon dioxide from 400 to 700 μmol&middot;mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> increased nutrient use efficiency for all the cacao genotypes. Elevated carbon dioxide and adequate PPFD are benefi</span><span style="font-family:Verdana;">cial in improving cacao growth and mineral nutrient uptake and use efficiency. 展开更多
关键词 Relative Growth Rate Net Assimilation Rate Mineral Nutrient Influx and Transport Mineral Nutrient uptake efficiency
下载PDF
Improving Nitrogen Use Efficiency in Rice through Enhancing Root Nitrate Uptake Mediated by a Nitrate Transporter, NRT1.1B 被引量:7
9
作者 ZhiChang Chen JianFeng Ma 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第9期463-465,共3页
Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has... Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has been an important agronomic practice to increase crop yield. However, over-application of N fertilizers has caused pollution of N in soil, water and air. It was estimated that the nitrogen use efficiency (NUE, the total biomass or grain yield produced per unit of applied fertilizer N) in cereal crops is as low as 33% (Raun and Johnson, 1999). Therefore, improving NUE together with reducing application of N fertilizers is an important issue for environment and sustainable production of crops. This is especially important for rice, which is a staple food for half population in the world. 展开更多
关键词 NRT1.1B Improving Nitrogen Use efficiency in Rice through Enhancing Root Nitrate uptake Mediated by a Nitrate Transporter
原文传递
Water and Nutrient Use Efficiency in Diploid, Tetraploid and Hexaploid Wheats 被引量:9
10
作者 Ming-Li Huang Xi-Ping Deng +4 位作者 Yu-Zong Zhao Sheng-Lu Zhou Shinobu Inanaga Satoshi Yamada Kiyoshi Tanaka 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第5期706-715,共10页
Three diploid (Triticum boeoticum, AA; Aegilops speltoides, BB and Ae. tauschii, DD), two tetraplold (T. dlcoccoides, AABB and T. dicoccon, AABB) and one hexapioid (T. vulgare, AABBDD) varieties of wheat, which ... Three diploid (Triticum boeoticum, AA; Aegilops speltoides, BB and Ae. tauschii, DD), two tetraplold (T. dlcoccoides, AABB and T. dicoccon, AABB) and one hexapioid (T. vulgare, AABBDD) varieties of wheat, which are very important In the evolution of wheat were chosen in this study. A pot experiment was carried out on the wheat under different water and nutrient conditions (i) to understand the differences in biomass, yield, water use efficiency (WUE), and nutrient (N, P and K) use efficiency (uptake and utilization efficiency) among ploidies in the evolution of wheat; (li) to clarify the effect of water and nutrient conditions on water and nutrient use efficiency; and (ill) to assess the relationship of water and nutrient use efficiency in the evolution of wheat. Our results showed that from diploid to tetraplold then to hexaploid during the evolution of wheat, both root biomass and above-ground biomass Increased Initially and then decreased. Water consumption for transpiration decreased remarkably, correlating with the decline of the growth period, while grain yield, harvest index, WUE, N, P and K uptake efficiency, and N, P and K utilization efficiency Increased significantly. Grain yield, harvest index and WUE decreased In the same order: T. vulgare 〉 T. dicoccon 〉 T. dicoccoides 〉 Ae. tauschii 〉 Ae. speltoides 〉 T. boeoticum. Water stress significantly decreased root blomass, above-ground biomass, yield, and water consumption for transpiration by 47-52%, but remarkably Increased WUE. Increasing the nutrient supply increased wheat above-ground biomass, grain yield, harvest Index, water consumption for transpiration and WUE under different water levels, but reduced root blomass under drought conditions. Generally, water stress and low nutrient supply resulted in the lower nutrient uptake efficiency of wheat. However, water and nutrient application had no significant effects on nutrient utilization efficiency, suggesting that wheat nutrient utilization efficiency is mainly controlled by genotypes. Compared to the other two diploid wheats, Ae. squarrosa (DD) had significant higher WUE and nutrient utilization efficiency, Indicating that the D genome may carry genes controlling high efficient utilization of water and nutrient. Significant relation- ships were found between WUE and N, P and K utilization efficiency. 展开更多
关键词 DIPLOID evolution HEXAPLOID nutrient uptake efficiency nutrient utilization efficiency TETRAPLOID water use efficiency wheat.
原文传递
Nitrogen Use Efficiency of Rice Under Cadmium Contamination:Influence of Rice Cultivar Versus Soil Type 被引量:1
11
作者 ZHOU Yanli SUN Bo 《Pedosphere》 SCIE CAS CSCD 2017年第6期1092-1104,共13页
There is a need for rice cultivars with high yields and nitrogen(N) use efficiency(NUE), but with low cadmium(Cd) accumulation in Cd-contaminated paddy soils.To determine the relative effects of rice genotype, soil ty... There is a need for rice cultivars with high yields and nitrogen(N) use efficiency(NUE), but with low cadmium(Cd) accumulation in Cd-contaminated paddy soils.To determine the relative effects of rice genotype, soil type, and Cd addition on rice grain yield and NUE, a pot experiment consisting of nine rice cultivars was conducted in two types of paddy soils, red soil(RS) and yellow soil(YS),without or with Cd spiked at 0.6 mg kg^(-1).The N supply was from both soil organic N pools and N fertilizers; thus, NUE was defined as the grain yield per unit of total crop-available N in the soil.Cd addition decreased grain yield and NUE in most rice cultivars,which was mainly related to reduced N uptake efficiency(NpUE, defined as the percentage of N taken up by the crop per unit of soil available N).However, Cd addition enhanced N assimilation efficiency(NtUE, defined as the grain yield per unit of N taken up by the crop) by 21.9% on average in all rice cultivars.The NpUE was mainly affected by soil type, whereas NtUE was affected by rice cultivar.Hybrid cultivars had higher NUEs than the japonica and indica cultivars because of their greater biomass and higher tolerance to Cd contamination.Reduction of NUE after Cd addition was stronger in RS than in YS, which was related to the lower absorption capacity for Cd in RS.Canonical correspondence analysis-based variation partitioning showed that cultivar type had the largest effect(34.4%) on NUE, followed by Cd addition(15.2%) and soil type(10.0%). 展开更多
关键词 crop-available N grain yield N uptake efficiency N assimilation efficiency soil available N
原文传递
EFFECT OF SURFACE CHARGE OF POLYMERIC MICELLES ON IN VITRO CELLULAR UPTAKE 被引量:1
12
作者 Dan-hua Zhou Jie Zhang +1 位作者 Guan Zhang Zhi-hua Gan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第9期1299-1309,共11页
This work focuses on the interaction between polymeric micelles with different charged surfaces and cancer cells in order to study the influence of surface charge on the in vitro cellular uptake efficiency. The amphip... This work focuses on the interaction between polymeric micelles with different charged surfaces and cancer cells in order to study the influence of surface charge on the in vitro cellular uptake efficiency. The amphiphilic diblock copolymers poly(e-caprolaetone)-b-poly(ethylene oxide) (PCL-b-PEO) with different functional groups at the end of hydrophilic block were synthesized. The functional groups endue the micelles with different charges on the surfaces. The cellular uptake of micelles to T-24 cells (human bladder tumor cells), HepG2 cells (human liver hepatocellular carcinoma cell line) and Hela cells (human epithelial cervical cancer cells) was studied by means of flow cytometer and confbcal laser scanning microscopy. The results indicate that the surface charges showed great influence on zeta potential of micelles at different pH values. The in vitro cellular uptake efficiency of micelles with different charged surfaces demonstrated different cellular uptake patterns to three kinds of cancer cells. 展开更多
关键词 Polymeric micelles Surface charge pH value Cellular uptake efficiency.
原文传递
Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions 被引量:2
13
作者 Khadim DAWAR Kamil SARDAR +5 位作者 Mohammad ZAMAN Christoph MÜLLER Alberto SANZ-COBENA Aamir KHAN Azam BORZOUEI Ana Gabriela PÉREZ-CASTILLO 《Pedosphere》 SCIE CAS CSCD 2021年第2期323-331,共9页
Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide(N_(2)O)emission and increase crop yield.However,no concrete information on their mitigation of N_(2)O emission is available under soil ... Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide(N_(2)O)emission and increase crop yield.However,no concrete information on their mitigation of N_(2)O emission is available under soil and environmental conditions as in Pakistan.A field experiment was established using a silt clay loam soil from Peshawar,Pakistan,to study the effect of urea applied in combination with a nitrification inhibitor,nitrapyrin(2-chloro-6-tri-chloromethyl pyridine),and/or a plant growth regulator,gibberellic acid(GA_3),on N_(2)O emission and the nitrogen(N)uptake efficiency of maize.The experimental design was a randomized complete block with five treatments in four replicates:control with no N(CK),urea(200 kg N ha^(-1))alone,urea in combination with nitrapyrin(700 g ha^(-1)),urea in combination with GA_3(60 g ha^(-1)),and urea in combination with nitrapyrin and GA_3.The N_(2)O emission,yield,N response efficiency,and total N uptake were measured during the experimental period.The treatment with urea and nitrapyrin reduced total N_(2)O emission by 39%–43%and decreased yield-scaled N_(2)O emission by 47%–52%,relative to the treatment with urea alone.The maize plant biomass,grain yield,and total N uptake increased significantly by 23%,17%,and 15%,respectively,in the treatment with urea and nitrapyrin,relative to the treatment with urea alone,which was possibly due to N saving,lower N loss,and increased N uptake in the form of ammonium;they were further enhanced in the treatment with urea,nitrapyrin,and GA_3 by 27%,36%,and 25%,respectively,probably because of the stimulating effect of GA_3 on plant growth and development and the reduction in biotic and abiotic stresses.These results suggest that applying urea in combination with nitrapyrin and GA_3 has the potential to mitigate N_(2)O emission,improve N response efficiency,and increase maize yield. 展开更多
关键词 fertilizer use efficiency greenhouse gas emission mitigation N response efficiency N uptake efficiency N_(2)O flux plant growth hormone UREA
原文传递
Fate of Basal N Under Split Fertilization in Rice with ^(15)N Isotope Tracer 被引量:11
14
作者 LI Ganghua LIN Jingjing +3 位作者 XUE Lihong DING Yanfeng WANG Shaohua YANG Linzhang 《Pedosphere》 SCIE CAS CSCD 2018年第1期135-143,共9页
Split fertilization strategy is popularly adopted in rice to synchronize soil nitrogen(N) supply and crop N demand. Attention has been paid more on mid-season topdressing N, but limited on basal N. A clearer understan... Split fertilization strategy is popularly adopted in rice to synchronize soil nitrogen(N) supply and crop N demand. Attention has been paid more on mid-season topdressing N, but limited on basal N. A clearer understanding of the basal N fate under split fertilization is crucial for determining rational basal N split ratio to improve the yield and reduce the loss to environment. A two-year field experiment with two N rates of 150 and 300 kg Nha^(-1), two split ratios of basal N, 40% and 25%, and two rice varieties,Wuyunjing 23(japonica) and Y-liangyou 2(super hybrid indica), was conducted. Labelled ^(15) N urea was supplied in micro-plots as basal fertilizer to determine the plant uptake, translocation, soil residual, and loss of basal N fertilizer. The results showed that basal N absorbed by rice was only 1.6%–11.5% before tillering fertilization(8–10 d after transplanting), 6.5%–21.4% from tillering fertilization to panicle fertilization, and little(0.1%–4.4%) after panicle fertilization. The recovery efficiency of basal N for the entire rice growth stage was low and ranged from 18.7% to 24.8%, not significantly affected by cultivars or N treatments. Soil residual basal N accounted for 10.3%–36.4% and decreased with increasing total N rate and basal N ratio, regardless of variety and year. 43.8%–70.4% of basal N was lost into the environment based on the N balance. Basal N loss was significantly linearly positive related with the basal N rate and obviously enhanced by the increasing basal N ratio for both varieties in both 2012 and 2013. The N use efficiency and yield was significantly improved when decreasing the basal N ratio from 40% to 25%. The results indicated that the basal N ratio should be reduced, especially with limited N inputs, to improve the yield and reduce the N loss to the environment. 展开更多
关键词 N balance N loss N split ratio N use efficiency plant uptake rice variety soil residual N yield
原文传递
Nutrient Composition and Distance from Point Placement to the Plant Affect Rice Growth 被引量:4
15
作者 HU Fengqin WANG Huoyan +1 位作者 MOU Pu ZHOU Jianmin 《Pedosphere》 SCIE CAS CSCD 2018年第1期124-134,共11页
Point placement of urea is an efficient technology to improve urea use efficiency in transplanted rice(Oryza sativa L.), but it is largely unknown how nutrient composition in the point placement and the distance from ... Point placement of urea is an efficient technology to improve urea use efficiency in transplanted rice(Oryza sativa L.), but it is largely unknown how nutrient composition in the point placement and the distance from placement site to the plant influence rice root distribution and growth, nutrient uptake, and rice grain yield. A controlled greenhouse experiment was conducted using both N-and P-deficient soil with point placement of N only or N and P together(N + P) at a distance close to or far from the plant,in comparison to an N-spilt application and a no-N control. Both nutrient composition and distance significantly affected rice root growth. Compared with the N point placement, the N + P point placement led to smaller root length and mass densities, higher specific root length(SRL) around the placement site, smaller root system, higher straw mass and grain yield, and higher N and P uptake. The difference between the N + P and N point placements was greater when close to the plant than when far from the plant. It is suggested that higher SRL around the placement site is essential for improving nutrient uptake and rice grain yield, and simultaneous point placement of N and P has a synergistic effect on rice growth. 展开更多
关键词 N use efficiency nutrient uptake phosphate rice yield root growth urea
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部