通过优化地铁时刻表可有效降低地铁牵引能耗。为解决客流波动和车辆延误对实际节能率影响的问题,提出列车牵引和供电系统实时潮流计算分析模型和基于Dueling Deep Q Network(Dueling DQN)深度强化学习算法相结合的运行图节能优化方法,...通过优化地铁时刻表可有效降低地铁牵引能耗。为解决客流波动和车辆延误对实际节能率影响的问题,提出列车牵引和供电系统实时潮流计算分析模型和基于Dueling Deep Q Network(Dueling DQN)深度强化学习算法相结合的运行图节能优化方法,建立基于区间动态客流概率统计的时刻表迭代优化模型,降低动态客流变化对节能率的影响。对预测Q网络和目标Q网络分别选取自适应时刻估计和均方根反向传播方法,提高模型收敛快速性,同时以时刻表优化前、后总运行时间不变、乘客换乘时间和等待时间最小为优化目标,实现节能时刻表无感切换。以苏州轨道交通4号线为例验证方法的有效性,节能对比试验结果表明:在到达换乘站时刻偏差不超过2 s和列车全周转运行时间不变的前提下,列车牵引节能率达5.27%,车公里能耗下降4.99%。展开更多