The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)...The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.展开更多
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical...Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.展开更多
A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East ...A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East Asia in sum- mer,The model is described briefly in the text and the results are analysed in somewhat detail.Results show that the sur- face albedo,the drag coefficient,the evaporation rate and the ground temperature all have large influences on the circula- tion near the Plateau and in East Asia.When the heating at the surface increases,the Tibetan high in the upper troposphere intensifies,too.Its area enlarges and its axis tilts to northwest.The upper tropical easterly increase and shifts to north.The southwesterly in the lower troposphere,in consistence,also increases.The cross-equatorial low-lev- el currents along Somali and South India are influenced to increase their speeds while those over North Australia de- crease.The land low over the Asian Continent deepens.Meanwhile the upward motions over the land of east China and over the Indo-China Peninsula intensify and therefore the precipitation over those areas increases.However,along the coastal area of China the upward motions and therefore the precipitation decrease. Atmospheric heat source anomaly has large influence on the circulation,too.Simulated results indicate that heat source anomaly in the lower atmosphere over the Plateau influences the intensity and the position of the monsoon circu- lation while that in the upper atmosphere only affects the intensity.The heating status over the Plateau has slight influ- ence on the westerly jet,north of the Plateau,while it has strong effect on the subtropical jet at the mid and low latitudes.展开更多
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
To meet the demand of urban rainwater integrated management,we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters.We discuss the feasibility of qua...To meet the demand of urban rainwater integrated management,we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters.We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system.In a com- prehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material,we simulated the major parameters of an experimental area rainfall,soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient,obtained from basic data.展开更多
The impacts of three periods of urban land expansion during 1990–2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming...The impacts of three periods of urban land expansion during 1990–2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscale Weather Research and Forecasting model coupled with a single urban canopy model,as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000–2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.展开更多
Urban-related warming in two first-tier cities(Guangzhou and Shenzhen)in southern China with similar large-scale climatic backgrounds was compared using the nested weather research and forecasting regional climate mod...Urban-related warming in two first-tier cities(Guangzhou and Shenzhen)in southern China with similar large-scale climatic backgrounds was compared using the nested weather research and forecasting regional climate model.The default urban data in the model were replaced by reconstructed annual urban data retrieved from satellite-based images for both coarse-(including all of China)and fine-resolution domains(eastern China and three city clusters in China:Beijing– Tianjin–Hebei(BTH),the Yangtze River Delta(YRD),and the Pearl River Delta(PRD)),which reproduced urban surface expansion during the past few decades.The results showed that the 37-year(1980–2016)area-averaged annual urban-related warming was similar(0.69°C/0.64°C)between the urban areas of Guangzhou/Shenzhen;however,the values across the entire area of the two cities varied(0.21°C/0.45°C).Seasonal characteristics could be detected for mean surface air temperatures(SAT)at 2 m,SAT maximum and minimum,and diurnal temperature range(DTR).Both the SAT maximum and minimum generally increased,especially over urban areas;however,changes in the SAT minimum were larger,which induced a decrease in DTR.The DTR in summer decreased by-0.25°C/-0.86°C across the entire area of the two cities and decreased by-0.93°C/-1.15°C over urban areas.The contributions of urban surface expansion to regional warming across the entire area of the two cities were approximately 17%/35%of the overall warming and much greater over Shenzhen.However,the values over urban areas were much closer to the values from total warming(35%/44%).展开更多
In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is ...In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement.展开更多
本文选取2011年7月23日发生在南京的一次雷暴个例,利用中尺度数值模式WRF(Weather Research and Forecasting model),耦合Noah/UCM,并采用NCEP FNL 1°×1°每日4次的全球分析场资料作为初始场及南京自动站观测数据等,对南...本文选取2011年7月23日发生在南京的一次雷暴个例,利用中尺度数值模式WRF(Weather Research and Forecasting model),耦合Noah/UCM,并采用NCEP FNL 1°×1°每日4次的全球分析场资料作为初始场及南京自动站观测数据等,对南京地区城市下垫面特征对雷暴过程的影响进行了数值模拟。结果表明:模拟的雷暴发生发展过程与该地区城市下垫面有着密切的联系。首先,雷暴发生前期,南京地区热岛效应明显。其次,城市上空的感热通量较高,结合城郊下垫面热力差异造成的城市热岛环流,加强了城区的辐合上升,为雷暴的形成提供了重要的抬升作用。城市下垫面扩张,使其上空边界层高度相应提升,垂直混合高度增加,有助于对流云的发展。此外,城市下垫面加强了大气低层的扰动位温,为雷暴提供了不稳定的层结条件。最后,城市地表较大的粗糙度使雷暴降水在城区低层的迎风面一侧明显增强。展开更多
本文在引进先进的城市地表能量平衡方案(Town Energy Balance,简称TEB)的基础上建立了一个单层城市冠层模式,并对南京市典型居民区1km2范围内的局地尺度地表能量平衡各分量进行离线模拟,将模拟结果与同期观测值作了比对,发现:TEB方案对...本文在引进先进的城市地表能量平衡方案(Town Energy Balance,简称TEB)的基础上建立了一个单层城市冠层模式,并对南京市典型居民区1km2范围内的局地尺度地表能量平衡各分量进行离线模拟,将模拟结果与同期观测值作了比对,发现:TEB方案对城市地表能量平衡各分量的模拟效果良好,而该方案的模拟性能受建筑物表面材料反照率取值的影响较大。在离线研究的基础上,本文又将TEB方案成功耦合到南京大学区域边界层模式(NJU-RBLM)中,作为该模式的地表能量平衡参数化方案之一,分别选取该边界层模式中原有的地表能量平衡参数化方案SVAT(Soil-Vegetation-Atmosphere-Transfermodel)和新引入的TEB方案对冬夏两季不同个例进行模拟,以常规近地面气温观测资料和Landsat卫星观测的地表反照率资料对模拟结果进行比较,结果表明:TEB方案对原大气边界层模式的模拟效果有明显改善,对近地面热力场的改善效果尤为明显,可以很好地模拟出城市冠层中的"陷阱效应"。展开更多
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40233030, 40405004, 40405014).
文摘The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 40275004 and 49575251.
文摘Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.
文摘A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East Asia in sum- mer,The model is described briefly in the text and the results are analysed in somewhat detail.Results show that the sur- face albedo,the drag coefficient,the evaporation rate and the ground temperature all have large influences on the circula- tion near the Plateau and in East Asia.When the heating at the surface increases,the Tibetan high in the upper troposphere intensifies,too.Its area enlarges and its axis tilts to northwest.The upper tropical easterly increase and shifts to north.The southwesterly in the lower troposphere,in consistence,also increases.The cross-equatorial low-lev- el currents along Somali and South India are influenced to increase their speeds while those over North Australia de- crease.The land low over the Asian Continent deepens.Meanwhile the upward motions over the land of east China and over the Indo-China Peninsula intensify and therefore the precipitation over those areas increases.However,along the coastal area of China the upward motions and therefore the precipitation decrease. Atmospheric heat source anomaly has large influence on the circulation,too.Simulated results indicate that heat source anomaly in the lower atmosphere over the Plateau influences the intensity and the position of the monsoon circu- lation while that in the upper atmosphere only affects the intensity.The heating status over the Plateau has slight influ- ence on the westerly jet,north of the Plateau,while it has strong effect on the subtropical jet at the mid and low latitudes.
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
基金Projects 40371113 supported by the National Natural Science Foundation of ChinaOF060096 by the Youth Scientific Foundation of China University of Mining & Technology
文摘To meet the demand of urban rainwater integrated management,we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters.We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system.In a com- prehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material,we simulated the major parameters of an experimental area rainfall,soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient,obtained from basic data.
基金supported by the National Basic Research Program of China(Grant No.2015CB953602)the National Social Science Fund of China(Grant No.17BGL256)
文摘The impacts of three periods of urban land expansion during 1990–2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscale Weather Research and Forecasting model coupled with a single urban canopy model,as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000–2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.41775087 and 41675149)the National Key Research and Development Program of China(Grant No.2016YFA0600403)+1 种基金the Chinese Academy of Sciences Strategic Priority Program(Grant No.XDA05090206)the Jiangsu Collaborative Innovation Center for Climatic Change
文摘Urban-related warming in two first-tier cities(Guangzhou and Shenzhen)in southern China with similar large-scale climatic backgrounds was compared using the nested weather research and forecasting regional climate model.The default urban data in the model were replaced by reconstructed annual urban data retrieved from satellite-based images for both coarse-(including all of China)and fine-resolution domains(eastern China and three city clusters in China:Beijing– Tianjin–Hebei(BTH),the Yangtze River Delta(YRD),and the Pearl River Delta(PRD)),which reproduced urban surface expansion during the past few decades.The results showed that the 37-year(1980–2016)area-averaged annual urban-related warming was similar(0.69°C/0.64°C)between the urban areas of Guangzhou/Shenzhen;however,the values across the entire area of the two cities varied(0.21°C/0.45°C).Seasonal characteristics could be detected for mean surface air temperatures(SAT)at 2 m,SAT maximum and minimum,and diurnal temperature range(DTR).Both the SAT maximum and minimum generally increased,especially over urban areas;however,changes in the SAT minimum were larger,which induced a decrease in DTR.The DTR in summer decreased by-0.25°C/-0.86°C across the entire area of the two cities and decreased by-0.93°C/-1.15°C over urban areas.The contributions of urban surface expansion to regional warming across the entire area of the two cities were approximately 17%/35%of the overall warming and much greater over Shenzhen.However,the values over urban areas were much closer to the values from total warming(35%/44%).
文摘In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement.
文摘本文选取2011年7月23日发生在南京的一次雷暴个例,利用中尺度数值模式WRF(Weather Research and Forecasting model),耦合Noah/UCM,并采用NCEP FNL 1°×1°每日4次的全球分析场资料作为初始场及南京自动站观测数据等,对南京地区城市下垫面特征对雷暴过程的影响进行了数值模拟。结果表明:模拟的雷暴发生发展过程与该地区城市下垫面有着密切的联系。首先,雷暴发生前期,南京地区热岛效应明显。其次,城市上空的感热通量较高,结合城郊下垫面热力差异造成的城市热岛环流,加强了城区的辐合上升,为雷暴的形成提供了重要的抬升作用。城市下垫面扩张,使其上空边界层高度相应提升,垂直混合高度增加,有助于对流云的发展。此外,城市下垫面加强了大气低层的扰动位温,为雷暴提供了不稳定的层结条件。最后,城市地表较大的粗糙度使雷暴降水在城区低层的迎风面一侧明显增强。
文摘本文在引进先进的城市地表能量平衡方案(Town Energy Balance,简称TEB)的基础上建立了一个单层城市冠层模式,并对南京市典型居民区1km2范围内的局地尺度地表能量平衡各分量进行离线模拟,将模拟结果与同期观测值作了比对,发现:TEB方案对城市地表能量平衡各分量的模拟效果良好,而该方案的模拟性能受建筑物表面材料反照率取值的影响较大。在离线研究的基础上,本文又将TEB方案成功耦合到南京大学区域边界层模式(NJU-RBLM)中,作为该模式的地表能量平衡参数化方案之一,分别选取该边界层模式中原有的地表能量平衡参数化方案SVAT(Soil-Vegetation-Atmosphere-Transfermodel)和新引入的TEB方案对冬夏两季不同个例进行模拟,以常规近地面气温观测资料和Landsat卫星观测的地表反照率资料对模拟结果进行比较,结果表明:TEB方案对原大气边界层模式的模拟效果有明显改善,对近地面热力场的改善效果尤为明显,可以很好地模拟出城市冠层中的"陷阱效应"。