Highly active transition metal nitrides are desirable for electrocatalytic reactions,but their long-term stability is still unsatisfactory and thus limiting commercial applications.Herein,for the first time,we report ...Highly active transition metal nitrides are desirable for electrocatalytic reactions,but their long-term stability is still unsatisfactory and thus limiting commercial applications.Herein,for the first time,we report a unique and universal room-temperature urea plasma method for controllable synthesis of N-doped carbon coated metal(Fe,Co,Ni,etc.)nitrides arrays electrocatalysts.The preformed metal oxides arrays can be successfully converted into metal nitrides arrays with preserved nanostructures and a thin layer of N-doped carbon(N-C)via one-step urea plasma.Typically,as a representative case,N-C@CoN nanowire arrays are illustrated and corresponding formation mechanism by plasma is proposed.Notably,the designed N-C@Co N catalysts deliver excellent electrocatalytic activity and long-term stability both in oxygen evolution reaction(OER)and urea oxidation reaction(UOR).For OER,a low overpotential(264 mV at 10 mA/cm^(2))and high stability(>50 h at 20 mA/cm^(2))are acquired.For UOR,a current density of100 m A/cm^(2) is achieved at only 1.39 V and maintain over 100 h.Theoretical calculations reveal that the synergetic coupling effect of CoN and N-C can significantly facilitate the charge-transfer process,optimize adsorbed intermediates binding strength and further greatly decrease the energy barrier.This strategy provides a novel method for fabrication of N-C@metal nitrides as highly active and stable catalysts.展开更多
In order to investigate the susceptibility of mixed infection of Ureaplasma Urealyticum (UU) and Mycoplasma Hominis (MH) to 7 kinds of antimicrobial agents and comparison with that of UU infection in NGU patients, the...In order to investigate the susceptibility of mixed infection of Ureaplasma Urealyticum (UU) and Mycoplasma Hominis (MH) to 7 kinds of antimicrobial agents and comparison with that of UU infection in NGU patients, the in vitro susceptibility was determined by using microdilution method. The positive results were analyzed. The results showed that the sequence of susceptibility to 7 kinds of antimicrobial agents for both UU infection group and UU-MH mixed infection group was almost the same from the highest susceptibility to the lowest accordingly: Josamycin, Doxycycline, Minocycline, Sparfloxacin, Roxithromycin, Ofloxacin and Azithromycin. The total drug resistance rate for UU-MH mixed infection group (97. 67 %) was significantly higher than that for UU infection group (44. 67 %, P<.0. 01). The highest drug resistance rate in UU group and UU-MH mixed infection group was 31. 33 % (Ofloxacin) and 90. 48 % (Azithromycin) respectively. UU-MH mixed infection showed an increased drug resistance and changes of drug resistance spectrum.展开更多
基金supported by National Natural Science Foundation of China(No.52073252)Science and Technology Department of Zhejiang Province(No.2023C01231)+2 种基金Key Research and Development Project of Science and Technology Department of Sichuan Province(No.2022YFSY0004)Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology)Ministry of Education(No.KFM 202202),and the Open Project Program of the State Key Laboratory of New textile Materials and Advanced Processing Technologies(No.FZ2021009)。
文摘Highly active transition metal nitrides are desirable for electrocatalytic reactions,but their long-term stability is still unsatisfactory and thus limiting commercial applications.Herein,for the first time,we report a unique and universal room-temperature urea plasma method for controllable synthesis of N-doped carbon coated metal(Fe,Co,Ni,etc.)nitrides arrays electrocatalysts.The preformed metal oxides arrays can be successfully converted into metal nitrides arrays with preserved nanostructures and a thin layer of N-doped carbon(N-C)via one-step urea plasma.Typically,as a representative case,N-C@CoN nanowire arrays are illustrated and corresponding formation mechanism by plasma is proposed.Notably,the designed N-C@Co N catalysts deliver excellent electrocatalytic activity and long-term stability both in oxygen evolution reaction(OER)and urea oxidation reaction(UOR).For OER,a low overpotential(264 mV at 10 mA/cm^(2))and high stability(>50 h at 20 mA/cm^(2))are acquired.For UOR,a current density of100 m A/cm^(2) is achieved at only 1.39 V and maintain over 100 h.Theoretical calculations reveal that the synergetic coupling effect of CoN and N-C can significantly facilitate the charge-transfer process,optimize adsorbed intermediates binding strength and further greatly decrease the energy barrier.This strategy provides a novel method for fabrication of N-C@metal nitrides as highly active and stable catalysts.
文摘In order to investigate the susceptibility of mixed infection of Ureaplasma Urealyticum (UU) and Mycoplasma Hominis (MH) to 7 kinds of antimicrobial agents and comparison with that of UU infection in NGU patients, the in vitro susceptibility was determined by using microdilution method. The positive results were analyzed. The results showed that the sequence of susceptibility to 7 kinds of antimicrobial agents for both UU infection group and UU-MH mixed infection group was almost the same from the highest susceptibility to the lowest accordingly: Josamycin, Doxycycline, Minocycline, Sparfloxacin, Roxithromycin, Ofloxacin and Azithromycin. The total drug resistance rate for UU-MH mixed infection group (97. 67 %) was significantly higher than that for UU infection group (44. 67 %, P<.0. 01). The highest drug resistance rate in UU group and UU-MH mixed infection group was 31. 33 % (Ofloxacin) and 90. 48 % (Azithromycin) respectively. UU-MH mixed infection showed an increased drug resistance and changes of drug resistance spectrum.