Microbial-induced carbonate precipitation(MICP)and enzyme-induced carbonate precipitation(EICP)are two bio-cementation techniques,which are relatively new methods of ground improvement.While both techniques share some...Microbial-induced carbonate precipitation(MICP)and enzyme-induced carbonate precipitation(EICP)are two bio-cementation techniques,which are relatively new methods of ground improvement.While both techniques share some similarities,they can exhibit different overall behaviours due to the differences in urease enzyme sources and treatment methods.This paper presented 40 unconfined compressive strength(UCS)tests of MICP and EICP treated sand specimens with similar average calcium carbonate(CaCO3)content subjected to cycles of wetting-drying(WD),freezing-thawing(FT)and elevated temperature(fire resistance test e FR and thermogravimetric analysis e TG).The average CaCO3 content after a certain number of WD or FT cycles(ACn)and their corresponding UCS(qn)reduced while the mass loss increased.The EICP treated sand specimens appeared to exhibit a lower resistance to WD and FT cycles than MICP treated specimens possibly due to the presence of unbonded or loosely bonded CaCO3 within the soil matrix,which was subsequently removed during the wetting(during WD)or thawing(during FT)process.FR test and TG analysis showed a significant loss of mass and reduction in CaCO3 content with increased temperatures,possibly due to the thermal decomposition of CaCO3.A complete deterioration of the MICP and EICP treated sand specimens was observed for temperatures above 600C.The observed behaviours are complex and theoretical understanding is far behind to develop a constitutive model to predict qn.Therefore,a multi-objective evolutionary genetic algorithm(GA)that deals with pseudo-polynomial structures,known as evolutionary polynomial regression(EPR),was used to seek three choices from millions of polynomial models.The best EPR model produced an excellent prediction of qn with a minimum sum of squares error(SSE)of 2.392,mean squared error(MSE)of 0.075,root mean square error(RMSE)of 0.273 and a maximum coefficient of determination of 0.939.展开更多
In the last two decades,developments in the area of biomineralization has yielded promising results making it a potentially environmentally friendly technique for a wide range of applications in engineering and wastew...In the last two decades,developments in the area of biomineralization has yielded promising results making it a potentially environmentally friendly technique for a wide range of applications in engineering and wastewater/heavy metal remediation.Microbially Induced Carbonate Precipitation(MICP)has led to numerous patented applications ranging from novel strains and nutrient sources for the precipitation of biominerals.Studies are being constantly published to optimize the process to become a promising,cost effective,ecofriendly approach when compared with the existing traditional remediation technologies which are implemented to solve multiple contamination/pollution issues.Heavy metal pollution still poses a major threat towards compromising the ecosystem.The removal of heavy metals is of high importance due to their recalcitrance and persistence in the environment.In that perspective,this paper reviews the current and most significant discoveries and applications of MICP towards the conversion of heavy metals into heavy metal carbonates and removal of calcium from contaminated media such as polluted water.It is evident from the literature survey that although heavy metal carbonate research is very effective in removal,is still in its early stages but could serve as a solution if the microorganisms are stimulated directly in the heavy metal environment.展开更多
文摘Microbial-induced carbonate precipitation(MICP)and enzyme-induced carbonate precipitation(EICP)are two bio-cementation techniques,which are relatively new methods of ground improvement.While both techniques share some similarities,they can exhibit different overall behaviours due to the differences in urease enzyme sources and treatment methods.This paper presented 40 unconfined compressive strength(UCS)tests of MICP and EICP treated sand specimens with similar average calcium carbonate(CaCO3)content subjected to cycles of wetting-drying(WD),freezing-thawing(FT)and elevated temperature(fire resistance test e FR and thermogravimetric analysis e TG).The average CaCO3 content after a certain number of WD or FT cycles(ACn)and their corresponding UCS(qn)reduced while the mass loss increased.The EICP treated sand specimens appeared to exhibit a lower resistance to WD and FT cycles than MICP treated specimens possibly due to the presence of unbonded or loosely bonded CaCO3 within the soil matrix,which was subsequently removed during the wetting(during WD)or thawing(during FT)process.FR test and TG analysis showed a significant loss of mass and reduction in CaCO3 content with increased temperatures,possibly due to the thermal decomposition of CaCO3.A complete deterioration of the MICP and EICP treated sand specimens was observed for temperatures above 600C.The observed behaviours are complex and theoretical understanding is far behind to develop a constitutive model to predict qn.Therefore,a multi-objective evolutionary genetic algorithm(GA)that deals with pseudo-polynomial structures,known as evolutionary polynomial regression(EPR),was used to seek three choices from millions of polynomial models.The best EPR model produced an excellent prediction of qn with a minimum sum of squares error(SSE)of 2.392,mean squared error(MSE)of 0.075,root mean square error(RMSE)of 0.273 and a maximum coefficient of determination of 0.939.
文摘In the last two decades,developments in the area of biomineralization has yielded promising results making it a potentially environmentally friendly technique for a wide range of applications in engineering and wastewater/heavy metal remediation.Microbially Induced Carbonate Precipitation(MICP)has led to numerous patented applications ranging from novel strains and nutrient sources for the precipitation of biominerals.Studies are being constantly published to optimize the process to become a promising,cost effective,ecofriendly approach when compared with the existing traditional remediation technologies which are implemented to solve multiple contamination/pollution issues.Heavy metal pollution still poses a major threat towards compromising the ecosystem.The removal of heavy metals is of high importance due to their recalcitrance and persistence in the environment.In that perspective,this paper reviews the current and most significant discoveries and applications of MICP towards the conversion of heavy metals into heavy metal carbonates and removal of calcium from contaminated media such as polluted water.It is evident from the literature survey that although heavy metal carbonate research is very effective in removal,is still in its early stages but could serve as a solution if the microorganisms are stimulated directly in the heavy metal environment.