In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to...In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.展开更多
Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Li...Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Linn.) O. Ktze. f., P_4), oleander (Nerium indicum Mill,P_5), rape (Brassica campestris L., P_g), Chinese tallow tree (Sapium sebiferum L., P_7), tung(Vernicia fordii (Hemsl.), P_8), and croton (Croton tiglium L., P_9), 7 chemicals, boric acid (C_1),borax (C_2), oxalic acid (C_3), sodium oxalite (C_4), sodium dihydrogen phosphate (C_6), sodiumsilicate (C_7) and sodium citrate (C_8), and a natural organic substance, humic acid (C_5), onurease activity of a neutral purple soil and recovery of urea nitrogen by maize were studied throughincubation and pot experiments. Hydroquinone (HQ) was applied as the reference inhibitor. Afterincubation at 37℃ for 24 h, 7 inhibitors with higher ability to inhibit urease activity wereselected and then incubated for 14 days at 25℃. Results of the incubation experiments showed thatsoil urease activity was greatly inhibited by them, and the inhibition effect followed an order ofP_2>P_4>C_3>C_2>P_3>C_1>HQ>P_1. The 7 selected materials reduced the accumulative amounts of Nreleased from urea and the maximum urease activity by 11.7%~28.4% and 26.7%~39.7%, respectively,and postponed the N release peak by 2~4 days in the incubation period of 14 days under constanttemperature, as compared to the control (no inhibitor). In the pot experiment with the 7 materialsat two levels of addition, low (L) and high (H), the C_1 (H), C_3 (H), C_1 (L), P_4 (L) and C_2 (L)treatments could significantly increase the dry weights of the aboveground parts and the totalbiomass of the maize plants and the apparent recovery rate of urea-N was increased by 6.3%~32.4% ascompared to the control (no hibitor).展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 39925007)the Biotechnology section of INCO-DC under the 4th Framework Program of the European Commission(No. ERBIC18CT960059).
文摘In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.
基金the Laboratory of Material Cycling in Pedosphere,the Chinese Academy of Sciences the Chongqing Science and Technology Commission,China.
文摘Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Linn.) O. Ktze. f., P_4), oleander (Nerium indicum Mill,P_5), rape (Brassica campestris L., P_g), Chinese tallow tree (Sapium sebiferum L., P_7), tung(Vernicia fordii (Hemsl.), P_8), and croton (Croton tiglium L., P_9), 7 chemicals, boric acid (C_1),borax (C_2), oxalic acid (C_3), sodium oxalite (C_4), sodium dihydrogen phosphate (C_6), sodiumsilicate (C_7) and sodium citrate (C_8), and a natural organic substance, humic acid (C_5), onurease activity of a neutral purple soil and recovery of urea nitrogen by maize were studied throughincubation and pot experiments. Hydroquinone (HQ) was applied as the reference inhibitor. Afterincubation at 37℃ for 24 h, 7 inhibitors with higher ability to inhibit urease activity wereselected and then incubated for 14 days at 25℃. Results of the incubation experiments showed thatsoil urease activity was greatly inhibited by them, and the inhibition effect followed an order ofP_2>P_4>C_3>C_2>P_3>C_1>HQ>P_1. The 7 selected materials reduced the accumulative amounts of Nreleased from urea and the maximum urease activity by 11.7%~28.4% and 26.7%~39.7%, respectively,and postponed the N release peak by 2~4 days in the incubation period of 14 days under constanttemperature, as compared to the control (no inhibitor). In the pot experiment with the 7 materialsat two levels of addition, low (L) and high (H), the C_1 (H), C_3 (H), C_1 (L), P_4 (L) and C_2 (L)treatments could significantly increase the dry weights of the aboveground parts and the totalbiomass of the maize plants and the apparent recovery rate of urea-N was increased by 6.3%~32.4% ascompared to the control (no hibitor).