Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult...Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult stem cells such as mesenchymal stem cells or pluripotent stem cells],urine-derived stem cells(USCs)have aroused interest in the past years.USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation.Importantly,they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure,which is broadly applicable,whereas most adult stem cell types require invasive procedure.Moreover,USCs can be differentiated into renal cell types.This is of high interest for renal cell therapy-based regenerative approaches.This review will firstly describe the isolation and characterization of USCs.We will specifically present USC phenotype,which is not an object of consensus in the literature,as well as detail their differentiation capacity.In the second part of this review,we will present and discuss the main applications of USCs.These include use as a substrate to generate human induced pluripotent stem cells,but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system.Importantly,we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes,which is a strategy being increasingly employed.In the last section,we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.展开更多
Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified ...Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.展开更多
基金Institut National de la Santéet la Recherche MédicaleUniversitéde Poitiers+2 种基金CHU de PoitiersRégion Nouvelle AquitaineFondation de l’Avenir,No.AP-RM-18-006.
文摘Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult stem cells such as mesenchymal stem cells or pluripotent stem cells],urine-derived stem cells(USCs)have aroused interest in the past years.USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation.Importantly,they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure,which is broadly applicable,whereas most adult stem cell types require invasive procedure.Moreover,USCs can be differentiated into renal cell types.This is of high interest for renal cell therapy-based regenerative approaches.This review will firstly describe the isolation and characterization of USCs.We will specifically present USC phenotype,which is not an object of consensus in the literature,as well as detail their differentiation capacity.In the second part of this review,we will present and discuss the main applications of USCs.These include use as a substrate to generate human induced pluripotent stem cells,but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system.Importantly,we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes,which is a strategy being increasingly employed.In the last section,we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.
基金supported by the National Natural Science Foundation of China(21375042,21405054,21525523,21574048,and21404028)the National Basic Research Program of China(2015CB932600,2013CB933000,and 2016YFF0100800)+1 种基金the Special Fund for Strategic New Industry Development of Shenzhen,China(JCYJ20150616144425376)1000 Young Talent Program(to F.Xia)
文摘Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.