In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of th...In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness dl, and lower layer thick-ness d2, instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehaute's plot for free surface waves if water depth ratio r= d1/d2 approaches to infinity and the upper layer water density p1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ=(P2 - Pl)/P2 → 1.0 and r 〉 1.0. In the end, several figures of the validity ranges for various interfacial wavetheories in the two-layer fluid are given and compared with the results for surface waves.展开更多
基金the Knowledge Innovation Project of CAS(KJCX-YW-L02)the National 863 Project of China(2006AAO9A103-4)+1 种基金China National Oil Corporation in Beijing(CNOOC)the National Natural Science Foundation of China(10672056).
文摘In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness dl, and lower layer thick-ness d2, instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehaute's plot for free surface waves if water depth ratio r= d1/d2 approaches to infinity and the upper layer water density p1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ=(P2 - Pl)/P2 → 1.0 and r 〉 1.0. In the end, several figures of the validity ranges for various interfacial wavetheories in the two-layer fluid are given and compared with the results for surface waves.