Snow cover provides essential resources and services for human well-being and socioeconomic development in arid areas. With the change in snow cover resulting from climate change that causes concerns about its consequ...Snow cover provides essential resources and services for human well-being and socioeconomic development in arid areas. With the change in snow cover resulting from climate change that causes concerns about its consequences, there is a pressing need to analyze and understand its impact on the benefits that people has been enjoying from snow cover. These can be derived from the variation in economic value of snow services, that are demanded to meet socioeconomic activities. Based on the average decline mass of snow cover from 1979 to 2016 in Irtysh River Basin, we use the approach by applying economic evaluation to estimate the annual value loss of snow services. Considering the decreasing trend of snow cover mass at rates of 10.2 Mt per year (p < 0.05) or 0.3% per year, the annual service loss in Irtysh River Basin is currently worth up to CN 196 million. Within it, the service loss of climate regulation contributes the most, or about CN 84.7 million. The loss of freshwater service contributes only about 19%, implying that there would be a significant underestimation of service loss if only water supply would be considered. This may cause biased decision-making when we are facing the challenges of declining services as a result of climate change, impacting on the balancing of socioeconomic development and environment conservation for the sustainability over a long term.展开更多
The snow cover over the Qinghai-Tibet Plateau(QTP)and its surrounding areas is very sensitive to climate changes.Due to the complexity of geographical environment in this large region,the response of snow cover to cli...The snow cover over the Qinghai-Tibet Plateau(QTP)and its surrounding areas is very sensitive to climate changes.Due to the complexity of geographical environment in this large region,the response of snow cover to climate change should exhibit spatiotemporal differences.In this study,the spatiotemporal variations of snow cover from 2002-2015 in the Yarlung Tsangpo-Brahmaputra River Basin(YBRB)were analyzed using an optimized fractional snow cover(FSC)product derived from Moderate Resolution Imaging Spectroradiometer(MODIS).Additionally,the effects of temperature and precipitation on the variability of snow cover were also investigated.The results showed that:(1)The snow cover exhibited large spatial and temporal heterogeneity in the YBRB.High FSC was observed in the northeast of the basin and the south slope of Himalaya,while the lowest was concentrated in the broad valley of the upstream of YBRB.The FSC value reached its highest in winter and dropped to its lowest in summer,but the monthly change processes were different between upstream and downstream regions.(2)A slightly increasing tendency(3.76%/10 a)of snow cover was observed on basin-wide,but the changes varied through time and space.The FSC increased significantly in the source and midstream regions during winter to spring(10.5%-18.0%/10 a),while it changed slightly in summer over all parts of the basin(-0.4%-4.3%/10 a).(3)The study area generally became warm and wet,and the change trend of temperature was more significant than that of precipitation.Snow cover changes were weakly correlated with temperature in winter and precipitation in summer.But in spring and autumn,both precipitation and temperature were significantly related to snow cover change in most regions of the basin.(4)The dominant factor driving the changes of snow cover varied in seasons.The area dominated by temperature was slightly larger than that dominated by precipitation in spring,except that precipitation significantly dominated the snow cover changes in the source region;In summer and autumn,temperature contributed more to the snow cover change in most areas of the basin;However,in winter,precipitation played a leading role in the variations of snow cover.These findings help to understand the different performance of the snow cover in the QTP and its surrounding areas under future climate change.展开更多
Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods...Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.展开更多
Estimating the snow cover change in alpine mountainous areas(in which meteorological stations are typically lacking)is crucial for managing local water resources and constitutes the first step in evaluating the contri...Estimating the snow cover change in alpine mountainous areas(in which meteorological stations are typically lacking)is crucial for managing local water resources and constitutes the first step in evaluating the contribution of snowmelt to runoff and the water cycle.In this paper,taking the Jingou River Basin on the northern slope of the Tianshan Mountains,China as an example,we combined a new moderate-resolution imaging spectroradiometer(MODIS)snow cover extent product over China spanning from 2000 to 2020 with digital elevation model(DEM)data to study the change in snow cover and the hydrological response of runoff to snow cover change in the Jingou River Basin under the background of climate change through trend analysis,sensitivity analysis and other methods.The results indicate that from 2000 to 2020,the annual average temperature and annual precipitation in the study area increased and snow cover fraction(SCF)showed obvious signs of periodicity.Furthermore,there were significant regional differences in the spatial distribution of snow cover days(SCDs),which were numerous in the south of the basin and sparse in the central of the basin.Factors affecting the change in snow cover mainly included temperature,precipitation,elevation,slope and aspect.Compared to precipitation,temperature had a greater impact on SCF.The annual variation in SCF was limited above the elevation of 4200 m,but it fluctuated greatly below the elevation of 4200 m.These results can be used to establish prediction models of snowmelt and runoff for alpine mountainous areas with limited hydrological data,which can provide a scientific basis for the management and protection of water resources in alpine mountainous areas.展开更多
Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulatio...Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulation of spring runoff in the Manas River Basin(MRB).Snow cover is one of the most significant input parameters for obtaining accurate simulations and predictions of spring runoff.Therefore,it is especially important to extract snow-covered area correctly in the MRB.In this study,we qualitatively and quantitatively analyzed the uncertainties of snow cover extraction caused by the terrain factors and land cover types using TM and DEM data,along with the Per(the ratio of the difference between snow-covered area extracted by the Normalized Difference Snow Index(NDSI) method and visual interpretation method to the actual snow-covered area) and roughness.The results indicated that the difference of snow-covered area extracted by the two methods was primarily reflected in the snow boundary and shadowy areas.The value of Per varied significantly in different elevation zones.That is,the value generally presented a normal distribution with the increase of elevation.The peak value of Per occurred in the elevation zone of 3,700–4,200 m.Aspects caused the uncertainties of snow cover extraction with the order of sunny slope〉semi-shady and semi-sunny slope〉shady slope,due to the differences in solar radiation received by each aspect.Regarding the influences of various land cover types on snow cover extraction in the study area,bare rock was more influential on snow cover extraction than grassland.Moreover,shrub had the weakest impact on snow cover extraction.展开更多
基金Natural Science Foundation of China (41690141 and 41671058)a Project of Chinese Academy of Sciences (XDA20100305)CAS Pioneer Hundred Talents Program.
文摘Snow cover provides essential resources and services for human well-being and socioeconomic development in arid areas. With the change in snow cover resulting from climate change that causes concerns about its consequences, there is a pressing need to analyze and understand its impact on the benefits that people has been enjoying from snow cover. These can be derived from the variation in economic value of snow services, that are demanded to meet socioeconomic activities. Based on the average decline mass of snow cover from 1979 to 2016 in Irtysh River Basin, we use the approach by applying economic evaluation to estimate the annual value loss of snow services. Considering the decreasing trend of snow cover mass at rates of 10.2 Mt per year (p < 0.05) or 0.3% per year, the annual service loss in Irtysh River Basin is currently worth up to CN 196 million. Within it, the service loss of climate regulation contributes the most, or about CN 84.7 million. The loss of freshwater service contributes only about 19%, implying that there would be a significant underestimation of service loss if only water supply would be considered. This may cause biased decision-making when we are facing the challenges of declining services as a result of climate change, impacting on the balancing of socioeconomic development and environment conservation for the sustainability over a long term.
基金funded by the National Natural Science Foundation of China(Grant No.42061005,41661144044 and 41561003)the Science and Technology Projects of Yunnan Province(Grant No.202101AT070110)。
文摘The snow cover over the Qinghai-Tibet Plateau(QTP)and its surrounding areas is very sensitive to climate changes.Due to the complexity of geographical environment in this large region,the response of snow cover to climate change should exhibit spatiotemporal differences.In this study,the spatiotemporal variations of snow cover from 2002-2015 in the Yarlung Tsangpo-Brahmaputra River Basin(YBRB)were analyzed using an optimized fractional snow cover(FSC)product derived from Moderate Resolution Imaging Spectroradiometer(MODIS).Additionally,the effects of temperature and precipitation on the variability of snow cover were also investigated.The results showed that:(1)The snow cover exhibited large spatial and temporal heterogeneity in the YBRB.High FSC was observed in the northeast of the basin and the south slope of Himalaya,while the lowest was concentrated in the broad valley of the upstream of YBRB.The FSC value reached its highest in winter and dropped to its lowest in summer,but the monthly change processes were different between upstream and downstream regions.(2)A slightly increasing tendency(3.76%/10 a)of snow cover was observed on basin-wide,but the changes varied through time and space.The FSC increased significantly in the source and midstream regions during winter to spring(10.5%-18.0%/10 a),while it changed slightly in summer over all parts of the basin(-0.4%-4.3%/10 a).(3)The study area generally became warm and wet,and the change trend of temperature was more significant than that of precipitation.Snow cover changes were weakly correlated with temperature in winter and precipitation in summer.But in spring and autumn,both precipitation and temperature were significantly related to snow cover change in most regions of the basin.(4)The dominant factor driving the changes of snow cover varied in seasons.The area dominated by temperature was slightly larger than that dominated by precipitation in spring,except that precipitation significantly dominated the snow cover changes in the source region;In summer and autumn,temperature contributed more to the snow cover change in most areas of the basin;However,in winter,precipitation played a leading role in the variations of snow cover.These findings help to understand the different performance of the snow cover in the QTP and its surrounding areas under future climate change.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 41401078, 91025011, 41222001)National Basic Research Program of China (2013CBA01806)
文摘Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.
基金supported by the National Natural Science Foundation of China(41961002,U1603342)the Natural Science Foundation Program of Xinjiang Uygur Autonomous Region(Special Training for Minorities)(2019D03004)。
文摘Estimating the snow cover change in alpine mountainous areas(in which meteorological stations are typically lacking)is crucial for managing local water resources and constitutes the first step in evaluating the contribution of snowmelt to runoff and the water cycle.In this paper,taking the Jingou River Basin on the northern slope of the Tianshan Mountains,China as an example,we combined a new moderate-resolution imaging spectroradiometer(MODIS)snow cover extent product over China spanning from 2000 to 2020 with digital elevation model(DEM)data to study the change in snow cover and the hydrological response of runoff to snow cover change in the Jingou River Basin under the background of climate change through trend analysis,sensitivity analysis and other methods.The results indicate that from 2000 to 2020,the annual average temperature and annual precipitation in the study area increased and snow cover fraction(SCF)showed obvious signs of periodicity.Furthermore,there were significant regional differences in the spatial distribution of snow cover days(SCDs),which were numerous in the south of the basin and sparse in the central of the basin.Factors affecting the change in snow cover mainly included temperature,precipitation,elevation,slope and aspect.Compared to precipitation,temperature had a greater impact on SCF.The annual variation in SCF was limited above the elevation of 4200 m,but it fluctuated greatly below the elevation of 4200 m.These results can be used to establish prediction models of snowmelt and runoff for alpine mountainous areas with limited hydrological data,which can provide a scientific basis for the management and protection of water resources in alpine mountainous areas.
基金funded by the National Natural Science Foundation of China (91025001)the Key Project of the National Science and Technology (E0405/1112/05)
文摘Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulation of spring runoff in the Manas River Basin(MRB).Snow cover is one of the most significant input parameters for obtaining accurate simulations and predictions of spring runoff.Therefore,it is especially important to extract snow-covered area correctly in the MRB.In this study,we qualitatively and quantitatively analyzed the uncertainties of snow cover extraction caused by the terrain factors and land cover types using TM and DEM data,along with the Per(the ratio of the difference between snow-covered area extracted by the Normalized Difference Snow Index(NDSI) method and visual interpretation method to the actual snow-covered area) and roughness.The results indicated that the difference of snow-covered area extracted by the two methods was primarily reflected in the snow boundary and shadowy areas.The value of Per varied significantly in different elevation zones.That is,the value generally presented a normal distribution with the increase of elevation.The peak value of Per occurred in the elevation zone of 3,700–4,200 m.Aspects caused the uncertainties of snow cover extraction with the order of sunny slope〉semi-shady and semi-sunny slope〉shady slope,due to the differences in solar radiation received by each aspect.Regarding the influences of various land cover types on snow cover extraction in the study area,bare rock was more influential on snow cover extraction than grassland.Moreover,shrub had the weakest impact on snow cover extraction.