期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations 被引量:1
1
作者 Muhammad Ibrahim Imran Sarwar Bajwa +3 位作者 Nadeem Sarwar Haroon Abdul Waheed Muhammad Zulkifl Hasan Muhammad Zunnurain Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第3期5301-5317,共17页
Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep lear... Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep learning approaches for capturing user and product information from a short text.However,such previously used approaches do not fairly and efficiently incorporate users’preferences and product characteristics.The proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations.To overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or not.The proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed problems.Experimental results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services. 展开更多
关键词 Neural sentiment classification user product attention deep collaborative filtering multivariate rating artificial intelligence
下载PDF
Personalization Method of E-Catalog Based on User Interesting Degree
2
作者 聂规划 徐尚英 陈冬林 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期215-222,共8页
The user interesting degree evaluation index is designed to fulfill the users' real needs, which includes the user' attention degree of commodity, hot commodity and preferential commodity. User interesting degree mo... The user interesting degree evaluation index is designed to fulfill the users' real needs, which includes the user' attention degree of commodity, hot commodity and preferential commodity. User interesting degree model (UIDM) is constructed to justify the value of user interesting degree; the personalization approach is presented; operations of add and delete nodes (branches) are covered in this paper. The improved e-catalog is more satisfied to users' needs and wants than the former e-catalog which stands for enterprises, and the improved one can complete the recommendation of related products of enterDriscs. 展开更多
关键词 user interesting degree model(UIDM) user attention hot commodity preferential commodity electronic catalog personalization approach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部