User profile matching can establish social relationships between different users in the social network.If the user profile is matched in plaintext,the user's privacy might face a security challenge.Although there ...User profile matching can establish social relationships between different users in the social network.If the user profile is matched in plaintext,the user's privacy might face a security challenge.Although there exist some schemes realizing privacypreserving user profile matching,the resource-limited users or social service providers in these schemes need to take higher computational complexity to ensure the privacy or matching of the data.To overcome the problems,a novel privacy-preserving user profile matching protocol in social networks is proposed by using t-out-of n servers and the bloom filter technique,in which the computational complexity of a user is reduced by applying the Chinese Remainder Theorem,the matching users can be found with the help of any t matching servers,and the privacy of the user profile is not compromised.Furthermore,if at most t-1 servers are allowed to collude,our scheme can still fulfill user profile privacy and user query privacy.Finally,the performance of the proposed scheme is compared with the other two schemes,and the results show that our scheme is superior to them.展开更多
The rapid development of mobile network brings opportunities for researchers to analyze user behaviors based on largescale network traffic data. It is important for Internet Service Providers(ISP) to optimize resource...The rapid development of mobile network brings opportunities for researchers to analyze user behaviors based on largescale network traffic data. It is important for Internet Service Providers(ISP) to optimize resource allocation and provide customized services to users. The first step of analyzing user behaviors is to extract information of user actions from HTTP traffic data by multi-pattern URL matching. However, the efficiency is a huge problem when performing this work on massive network traffic data. To solve this problem, we propose a novel and accurate algorithm named Multi-Pattern Parallel Matching(MPPM) that takes advantage of HashMap in data searching for extracting user behaviors from big network data more effectively. Extensive experiments based on real-world traffic data prove the ability of MPPM algorithm to deal with massive HTTP traffic with better performance on accuracy, concurrency and efficiency. We expect the proposed algorithm and it parallelized implementation would be a solid base to build a high-performance analysis engine of user behavior based on massive HTTP traffic data processing.展开更多
Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementat...Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementation, user experience, and different profile matching algorithms to provide better user experience in ad-hoc social network. We emphasize that strength of an ad-hoc social network depends on a good profile-matching algorithm that provides meaningful friend suggestions in proximity. Keeping browsing history is a good way to determine user’s interest, however, interests change with location. This paper presents a novel profile-matching algorithm for automatically building a user profile based on dynamic GPS (Global Positing System) location and browsing history of users. Building user profile based on GPS location of a user provides benefits to ASN users as this profile represents user’s dynamic interests that keep changing with location e.g. office, home, or some other location. Proposed profile-matching algorithm maintains multiple local profiles based on location of mobile device.展开更多
A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of...A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.展开更多
基金supported in part by the Natural Science Foundation of Beijing(no.4212019,M22002)the National Natural Science Foundation of China(no.62172005)+1 种基金the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province(No.ZCL21014)the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(no.2019BDKF JJ012)。
文摘User profile matching can establish social relationships between different users in the social network.If the user profile is matched in plaintext,the user's privacy might face a security challenge.Although there exist some schemes realizing privacypreserving user profile matching,the resource-limited users or social service providers in these schemes need to take higher computational complexity to ensure the privacy or matching of the data.To overcome the problems,a novel privacy-preserving user profile matching protocol in social networks is proposed by using t-out-of n servers and the bloom filter technique,in which the computational complexity of a user is reduced by applying the Chinese Remainder Theorem,the matching users can be found with the help of any t matching servers,and the privacy of the user profile is not compromised.Furthermore,if at most t-1 servers are allowed to collude,our scheme can still fulfill user profile privacy and user query privacy.Finally,the performance of the proposed scheme is compared with the other two schemes,and the results show that our scheme is superior to them.
基金supported in part by National Natural Science Foundation of China(61671078)the Director Funds of Beijing Key Laboratory of Network System Architecture and Convergence(2017BKL-NSACZJ-06)
文摘The rapid development of mobile network brings opportunities for researchers to analyze user behaviors based on largescale network traffic data. It is important for Internet Service Providers(ISP) to optimize resource allocation and provide customized services to users. The first step of analyzing user behaviors is to extract information of user actions from HTTP traffic data by multi-pattern URL matching. However, the efficiency is a huge problem when performing this work on massive network traffic data. To solve this problem, we propose a novel and accurate algorithm named Multi-Pattern Parallel Matching(MPPM) that takes advantage of HashMap in data searching for extracting user behaviors from big network data more effectively. Extensive experiments based on real-world traffic data prove the ability of MPPM algorithm to deal with massive HTTP traffic with better performance on accuracy, concurrency and efficiency. We expect the proposed algorithm and it parallelized implementation would be a solid base to build a high-performance analysis engine of user behavior based on massive HTTP traffic data processing.
文摘Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementation, user experience, and different profile matching algorithms to provide better user experience in ad-hoc social network. We emphasize that strength of an ad-hoc social network depends on a good profile-matching algorithm that provides meaningful friend suggestions in proximity. Keeping browsing history is a good way to determine user’s interest, however, interests change with location. This paper presents a novel profile-matching algorithm for automatically building a user profile based on dynamic GPS (Global Positing System) location and browsing history of users. Building user profile based on GPS location of a user provides benefits to ASN users as this profile represents user’s dynamic interests that keep changing with location e.g. office, home, or some other location. Proposed profile-matching algorithm maintains multiple local profiles based on location of mobile device.
文摘A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.