5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component i...5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component in achieving this goal. In this paper, we outline the main challenges that come with dense cell deployment, including interference, mobility, power consumption and backhaul. Technologies designed to tackle these challenges in long term evolution system(LTE) and their deficiencies in UDN context are also analyzed. To combat these challenges more efficiently, a series of technologies are introduced along with some of our initial research results. Moreover, the trends of user-centric and peer-to-peer design in UDN are also elaborated.展开更多
文摘5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component in achieving this goal. In this paper, we outline the main challenges that come with dense cell deployment, including interference, mobility, power consumption and backhaul. Technologies designed to tackle these challenges in long term evolution system(LTE) and their deficiencies in UDN context are also analyzed. To combat these challenges more efficiently, a series of technologies are introduced along with some of our initial research results. Moreover, the trends of user-centric and peer-to-peer design in UDN are also elaborated.