The basic idea behind a personalized web search is to deliver search results that are tailored to meet user needs, which is one of the growing concepts in web technologies. The personalized web search presented in thi...The basic idea behind a personalized web search is to deliver search results that are tailored to meet user needs, which is one of the growing concepts in web technologies. The personalized web search presented in this paper is based on exploiting the implicit feedbacks of user satisfaction during her web browsing history to construct a user profile storing the web pages the user is highly interested in. A weight is assigned to each page stored in the user’s profile;this weight reflects the user’s interest in this page. We name this weight the relative rank of the page, since it depends on the user issuing the query. Therefore, the ranking algorithm provided in this paper is based on the principle that;the rank assigned to a page is the addition of two rank values R_rank and A_rank. A_rank is an absolute rank, since it is fixed for all users issuing the same query, it only depends on the link structures of the web and on the keywords of the query. Thus, it could be calculated by the PageRank algorithm suggested by Brin and Page in 1998 and used by the google search engine. While, R_rank is the relative rank, it is calculated by the methods given in this paper which depends mainly on recording implicit measures of user satisfaction during her previous browsing history.展开更多
针对Web数据库近似查询产生的多查询结果问题,提出了一种近似查询结果自动排序方法,该方法利用KL距离(Kullback-Leibler distance),PIR(probabilistic information retrieval)模型和查询历史(query history)来构建元组排序打分函数;打...针对Web数据库近似查询产生的多查询结果问题,提出了一种近似查询结果自动排序方法,该方法利用KL距离(Kullback-Leibler distance),PIR(probabilistic information retrieval)模型和查询历史(query history)来构建元组排序打分函数;打分函数根据结果元组中被查询指定的属性值对初始查询的满足度和未被查询指定的属性值与用户偏好的相关度来评估元组的排序分值.实验证明,提出的排序方法能够较好地满足用户需求和偏好,并具有较高执行效率.展开更多
文摘The basic idea behind a personalized web search is to deliver search results that are tailored to meet user needs, which is one of the growing concepts in web technologies. The personalized web search presented in this paper is based on exploiting the implicit feedbacks of user satisfaction during her web browsing history to construct a user profile storing the web pages the user is highly interested in. A weight is assigned to each page stored in the user’s profile;this weight reflects the user’s interest in this page. We name this weight the relative rank of the page, since it depends on the user issuing the query. Therefore, the ranking algorithm provided in this paper is based on the principle that;the rank assigned to a page is the addition of two rank values R_rank and A_rank. A_rank is an absolute rank, since it is fixed for all users issuing the same query, it only depends on the link structures of the web and on the keywords of the query. Thus, it could be calculated by the PageRank algorithm suggested by Brin and Page in 1998 and used by the google search engine. While, R_rank is the relative rank, it is calculated by the methods given in this paper which depends mainly on recording implicit measures of user satisfaction during her previous browsing history.
文摘针对Web数据库近似查询产生的多查询结果问题,提出了一种近似查询结果自动排序方法,该方法利用KL距离(Kullback-Leibler distance),PIR(probabilistic information retrieval)模型和查询历史(query history)来构建元组排序打分函数;打分函数根据结果元组中被查询指定的属性值对初始查询的满足度和未被查询指定的属性值与用户偏好的相关度来评估元组的排序分值.实验证明,提出的排序方法能够较好地满足用户需求和偏好,并具有较高执行效率.