The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5...The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5, xerogel is a layered structure which arranges in c-direction. The mterlayer distance of V2O5 xerogel increases remarkably when PEO is intercalated in V2O5 xero-gel interlayer. PEO has strong interaction with V2O5 host. The surface of the films is homogeneous without holes and cracks.展开更多
V2O5 films were prepared on silicon wafers by DC magnetron sputtering and post-annealing under various conditions. The influence of depositing and post-annealing temperatures on microstructure of V2O5 films was studie...V2O5 films were prepared on silicon wafers by DC magnetron sputtering and post-annealing under various conditions. The influence of depositing and post-annealing temperatures on microstructure of V2O5 films was studied by XRD and Raman scattering measurements. The results reveal that sputtered V2O5 films show preferred growth orientation along (001) planes and the c-axis is perpendicular to the silicon substrate surface. It is interesting to find that both the V2O5 film deposited at temperature of 511 ℃ and the one annealed at 500 ℃ exhibit desirable layer-type structure of orthorhombic symmetry. Such layer-typed V2O5 films are promising candidates for cathodes of rechargeable lithium or magnesium thin-film batteries.展开更多
The V 2O 5 sol was fabricated by ultra fast quenching.The vanadium with low valence (V 4+ ) was found in V 2O 5 xerogel films by XPS analysis.The technology of oxygen top blown was applied to analyze the XPS...The V 2O 5 sol was fabricated by ultra fast quenching.The vanadium with low valence (V 4+ ) was found in V 2O 5 xerogel films by XPS analysis.The technology of oxygen top blown was applied to analyze the XPS spectrum difference of V 2O 5 xerogel when the powder of V 2O 5 was melting in air or in oxygen atmosphere.The results show that the different melting atmosphere has certain influences on the chemical valence of V 2O 5 xerogel.展开更多
Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, toget...Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.展开更多
Novel nano-structured films of V2O5 are prepared by pulsed laser deposition method. Nanoscaled V2O5 ridges lie on SrTiO3 substrate and construct into grid-textured structures. Structural properties of the films have b...Novel nano-structured films of V2O5 are prepared by pulsed laser deposition method. Nanoscaled V2O5 ridges lie on SrTiO3 substrate and construct into grid-textured structures. Structural properties of the films have been analyzed by scanning electron microscope, X-ray diffraction and transmission electron microscope. The films have enlarged surface-to-volume ratio due to the ridge-channel structure which makes them applicable to gas sensing. Therefore, gas sensors based on the V2O5 films have been assembled which present reliable sensing properties to gaseous acetone, and ethanol at room temperature. The physical-chemical reactions between adsorbed O2^– and testing gases are the possible reason for this property.展开更多
基金This project was supported by National Natural Science Foundation of China (Grant No.59802009 ) and Hubei Province Natural Science Foundation(Grant No. 99J053).
文摘The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5, xerogel is a layered structure which arranges in c-direction. The mterlayer distance of V2O5 xerogel increases remarkably when PEO is intercalated in V2O5 xero-gel interlayer. PEO has strong interaction with V2O5 host. The surface of the films is homogeneous without holes and cracks.
基金[This work was financially supported by the National Natural Science Foundation of China (No.50402024)Natural Science Foundation of Gansu Province (No.ZS 041-A25-033).
文摘V2O5 films were prepared on silicon wafers by DC magnetron sputtering and post-annealing under various conditions. The influence of depositing and post-annealing temperatures on microstructure of V2O5 films was studied by XRD and Raman scattering measurements. The results reveal that sputtered V2O5 films show preferred growth orientation along (001) planes and the c-axis is perpendicular to the silicon substrate surface. It is interesting to find that both the V2O5 film deposited at temperature of 511 ℃ and the one annealed at 500 ℃ exhibit desirable layer-type structure of orthorhombic symmetry. Such layer-typed V2O5 films are promising candidates for cathodes of rechargeable lithium or magnesium thin-film batteries.
文摘The V 2O 5 sol was fabricated by ultra fast quenching.The vanadium with low valence (V 4+ ) was found in V 2O 5 xerogel films by XPS analysis.The technology of oxygen top blown was applied to analyze the XPS spectrum difference of V 2O 5 xerogel when the powder of V 2O 5 was melting in air or in oxygen atmosphere.The results show that the different melting atmosphere has certain influences on the chemical valence of V 2O 5 xerogel.
文摘Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.
基金supported by the National Key Project for Basic Research(Grant No.2014CB921002)the National Natural Science Foundation of China(Grant No.11374225)the Research Grant Council of Hong Kong(Grant No.702112)
文摘Novel nano-structured films of V2O5 are prepared by pulsed laser deposition method. Nanoscaled V2O5 ridges lie on SrTiO3 substrate and construct into grid-textured structures. Structural properties of the films have been analyzed by scanning electron microscope, X-ray diffraction and transmission electron microscope. The films have enlarged surface-to-volume ratio due to the ridge-channel structure which makes them applicable to gas sensing. Therefore, gas sensors based on the V2O5 films have been assembled which present reliable sensing properties to gaseous acetone, and ethanol at room temperature. The physical-chemical reactions between adsorbed O2^– and testing gases are the possible reason for this property.