Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transm...Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and UV-Vis spectroscopy, respectively. The experimental results show that the pure TiO2 thin films and iron doped TiO2 thin films can destroy most of the escherichia coli and bacillus subtillis under the irradiation of 365 nm UV-light. However, the iron doped TiO2 thin film is a better photocatalyst than pure TiO2 thin film. The ultrastructural studies provide direct evidences for understanding the bactericidal mechanism of the TiO2 photocatalyst.展开更多
A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐W...A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.展开更多
The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne po...The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped Ti O2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped Ti O2 were signifi cantly enhanced compared with pure Ti O2 powders. After the hybrid fi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts with kMB of 0.046. In the antibacterial testing, the hybrid fi lms can inhibit E. coli growth. A signifi cant decrease in membrane fl uidity and increase of permeability of E. coli were observed.展开更多
The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in th...The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in the process by forming mesopores to increase the specific surface area and by nitrogen doping to increase visible light absorption. Importantly, TiO2 formation, porosity architectures and nitrogen doping can be performed by implantation of He, O and N in one step. After implantation, annealing at 650 ℃ leads to a mixing phase of anatase with a little rutile in the implanted layer. By removing the near surface compact layer using argon ion sputtering, the meso-porous structure was exposed on surfaces. Nitrogen doping enlarges the photo-response region of visible light. Moreover, the nitrogen dose of 8×1015 ion/cm2 induces a stronger visible light absorption. The photodegradation of rhodamine B solution with visible light sources indicates that the mesopores on surfaces and nitrogen doping contribute to an apparent increase of photocatalysis efficiency.展开更多
We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of ...We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of n (Sn)∶ n (Ti)=1∶10 . Sn doping largely enhanced the photocatalytic activity of TiO 2 film for phenol degradation. The enhancement in photoactivity by doping was discussed, based on the characterization with AFM, FTIR and EFISPS. Sn doping produced localized level of Sn 4+ in the band gap of TiO 2, about 0.4 eV below the conduction band, which could capture photogenerated electrons and reduce O 2 adsorbed on the surface of TiO 2 film, thus accelerated the photocatalytic reaction.展开更多
基金the National"973"Plan Research Project(No.2004CB619204)Educational Ministry Scientific and Technological Research Key Project(No.02052)
文摘Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and UV-Vis spectroscopy, respectively. The experimental results show that the pure TiO2 thin films and iron doped TiO2 thin films can destroy most of the escherichia coli and bacillus subtillis under the irradiation of 365 nm UV-light. However, the iron doped TiO2 thin film is a better photocatalyst than pure TiO2 thin film. The ultrastructural studies provide direct evidences for understanding the bactericidal mechanism of the TiO2 photocatalyst.
基金supported by the National Natural Science Foundation of China(21876168,21507130)the Key Projects for Common Key Technology Innovation in Key Industries in Chongqing(cstc2016zdcy-ztzx0020-01)+2 种基金the Chongqing Science&Technology Commission(cstc2016jcyjA0070,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University(1456029)the Graduate Innovation Project of Chongqing Technology and Business University(yjscxx201803-028-22)~~
文摘A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.
基金Funded by the National Natural Science Foundation of China(No.51208141)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.QA201206)
文摘The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped Ti O2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped Ti O2 were signifi cantly enhanced compared with pure Ti O2 powders. After the hybrid fi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts with kMB of 0.046. In the antibacterial testing, the hybrid fi lms can inhibit E. coli growth. A signifi cant decrease in membrane fl uidity and increase of permeability of E. coli were observed.
基金Project(20040213048) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(20090450737) supported by the China Postdoctoral Science Foundation
文摘The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in the process by forming mesopores to increase the specific surface area and by nitrogen doping to increase visible light absorption. Importantly, TiO2 formation, porosity architectures and nitrogen doping can be performed by implantation of He, O and N in one step. After implantation, annealing at 650 ℃ leads to a mixing phase of anatase with a little rutile in the implanted layer. By removing the near surface compact layer using argon ion sputtering, the meso-porous structure was exposed on surfaces. Nitrogen doping enlarges the photo-response region of visible light. Moreover, the nitrogen dose of 8×1015 ion/cm2 induces a stronger visible light absorption. The photodegradation of rhodamine B solution with visible light sources indicates that the mesopores on surfaces and nitrogen doping contribute to an apparent increase of photocatalysis efficiency.
文摘We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of n (Sn)∶ n (Ti)=1∶10 . Sn doping largely enhanced the photocatalytic activity of TiO 2 film for phenol degradation. The enhancement in photoactivity by doping was discussed, based on the characterization with AFM, FTIR and EFISPS. Sn doping produced localized level of Sn 4+ in the band gap of TiO 2, about 0.4 eV below the conduction band, which could capture photogenerated electrons and reduce O 2 adsorbed on the surface of TiO 2 film, thus accelerated the photocatalytic reaction.