The structures and catalytic performances of V_2O_5, Mg_3V_2O_8 and V/MgO catalysts have been correlated by means of XRD, FTIR, TPR and flow micro-reactor tests. The postulation about active site has been made. Based ...The structures and catalytic performances of V_2O_5, Mg_3V_2O_8 and V/MgO catalysts have been correlated by means of XRD, FTIR, TPR and flow micro-reactor tests. The postulation about active site has been made. Based on it, better catalysts have been first prepared via grafting and modification with Sb which are better than that via impregnation.展开更多
应用经硅烷偶联处理后的纳米氧化镁(MgO)粉末与低密度聚乙烯(low density polyethylene,LDPE)共混,制得MgO/LDPE复合介质。高成分衬度扫描电镜(scanningelectron microscope,SEM)中图像表明,粒径为100 nm左右的MgO纳米粒子均匀的分散于...应用经硅烷偶联处理后的纳米氧化镁(MgO)粉末与低密度聚乙烯(low density polyethylene,LDPE)共混,制得MgO/LDPE复合介质。高成分衬度扫描电镜(scanningelectron microscope,SEM)中图像表明,粒径为100 nm左右的MgO纳米粒子均匀的分散于介质中。通过电声脉冲法(pulsed electro-acoustic,PEA)测试发现,当纳米MgO填料的质量分数为4%时,可以有效抑制空间电荷的注入,伏安特性的实验结果表明,复合介质拥有更高的空间电荷注入阈值场强。通过电树枝实验,发现复合介质可以抑制电树枝的引发和生长。最后,对实验结果进行了分析,探讨了纳米复合介质抑制空间电荷和树枝化生长的机制。纳米颗粒与基体材料界面电荷行为可能是复合介质电学性能改善的原因。展开更多
文摘The structures and catalytic performances of V_2O_5, Mg_3V_2O_8 and V/MgO catalysts have been correlated by means of XRD, FTIR, TPR and flow micro-reactor tests. The postulation about active site has been made. Based on it, better catalysts have been first prepared via grafting and modification with Sb which are better than that via impregnation.