期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高光谱图像与果蝇优化算法的马铃薯轻微碰伤检测
被引量:
9
1
作者
李小昱
徐森淼
+2 位作者
冯耀泽
黄涛
丁崇毅
《农业机械学报》
EI
CAS
CSCD
北大核心
2016年第1期221-226,共6页
针对通常采用的反射高光谱无法准确检测随机放置马铃薯表面轻微碰伤的问题,提出了一种用V型平面镜的高光谱并结合果蝇优化算法(FOA)检测马铃薯轻微碰伤的方法。试验搭建了V型平面镜反射高光谱图像采集系统,分别采集随机放置下的轻微碰...
针对通常采用的反射高光谱无法准确检测随机放置马铃薯表面轻微碰伤的问题,提出了一种用V型平面镜的高光谱并结合果蝇优化算法(FOA)检测马铃薯轻微碰伤的方法。试验搭建了V型平面镜反射高光谱图像采集系统,分别采集随机放置下的轻微碰伤和合格马铃薯的高光谱图像,每张高光谱图像包含平面镜1反射图像F1、相机直接采集图像F2、平面镜2反射图像F3,分别提取F1、F2、F3感兴趣区域的平均光谱拼接成马铃薯的属性矩阵。采用标准正态变量变换(SNV)预处理后的光谱矩阵进行全波段的支持向量分类机(SVC)建模,预测集的识别率仅为84.11%;为了提高模型的性能,采用蚁群算法(ACO)进行变量优选,优选出9个变量建立的SVC模型预测准确率为95.32%;分别用网格搜索法(Grid search)、遗传算法(GA)和FOA对SVC的惩罚参数c和核函数参数g进行寻优,通过比较分析,FOA-SVC对训练集和预测集的识别准确率均达到100%。试验结果表明,用V型平面镜的高光谱结合FOA-SVC能够准确检测马铃薯的轻微碰伤,可为马铃薯的轻微碰伤在线检测提供技术基础。
展开更多
关键词
马铃薯
轻微碰伤
v型平面镜
高光谱成像
果蝇优化算法
下载PDF
职称材料
题名
基于高光谱图像与果蝇优化算法的马铃薯轻微碰伤检测
被引量:
9
1
作者
李小昱
徐森淼
冯耀泽
黄涛
丁崇毅
机构
华中农业大学工学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2016年第1期221-226,共6页
基金
国家自然科学基金项目(61275156)
湖北省自然科学基金重点项目(2011CDA033)
文摘
针对通常采用的反射高光谱无法准确检测随机放置马铃薯表面轻微碰伤的问题,提出了一种用V型平面镜的高光谱并结合果蝇优化算法(FOA)检测马铃薯轻微碰伤的方法。试验搭建了V型平面镜反射高光谱图像采集系统,分别采集随机放置下的轻微碰伤和合格马铃薯的高光谱图像,每张高光谱图像包含平面镜1反射图像F1、相机直接采集图像F2、平面镜2反射图像F3,分别提取F1、F2、F3感兴趣区域的平均光谱拼接成马铃薯的属性矩阵。采用标准正态变量变换(SNV)预处理后的光谱矩阵进行全波段的支持向量分类机(SVC)建模,预测集的识别率仅为84.11%;为了提高模型的性能,采用蚁群算法(ACO)进行变量优选,优选出9个变量建立的SVC模型预测准确率为95.32%;分别用网格搜索法(Grid search)、遗传算法(GA)和FOA对SVC的惩罚参数c和核函数参数g进行寻优,通过比较分析,FOA-SVC对训练集和预测集的识别准确率均达到100%。试验结果表明,用V型平面镜的高光谱结合FOA-SVC能够准确检测马铃薯的轻微碰伤,可为马铃薯的轻微碰伤在线检测提供技术基础。
关键词
马铃薯
轻微碰伤
v型平面镜
高光谱成像
果蝇优化算法
Keywords
potato
slight bruise
v
-shaped plane mirror
hyperspectral imaging
fruit fly optimization algorithm
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于高光谱图像与果蝇优化算法的马铃薯轻微碰伤检测
李小昱
徐森淼
冯耀泽
黄涛
丁崇毅
《农业机械学报》
EI
CAS
CSCD
北大核心
2016
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部