在多输入多输出(multiple-input multiple-output,MIMO)系统信号检测中,基于虚实分解的宽度优先检测算法(QR decomposition associated with the M-algorithm to MLD,QRD-M)通过QR分解和对每层星座点的筛选,实现了较低复杂度的检测,具...在多输入多输出(multiple-input multiple-output,MIMO)系统信号检测中,基于虚实分解的宽度优先检测算法(QR decomposition associated with the M-algorithm to MLD,QRD-M)通过QR分解和对每层星座点的筛选,实现了较低复杂度的检测,具有很好的应用前景。但该算法随收发天线数和调制阶数的增加而难以实现性能与复杂度的折衷。针对此缺点,提出了一种基于信噪比排序的信号检测改进方法。该方法在传统QRD-M算法的基础上,通过对不同接收天线进行信噪比(signal-noise ratio,SNR)排序,从信噪比最大的天线开始检测,避免了误差传播现象,从而加速树搜索过程,再结合动态门限树搜索,不断缩小搜索半径,直至找到最小累计度量值所在分支。仿真结果表明,与传统QRD-MLD算法相比,基于性噪比排序的动态门限信号检测算法能以较低的复杂度获得接近于最大似然检测的性能。展开更多
针对MIMO-OFDM系统中,基于粒子群优化的信号检测算法易于陷入局部极值和收敛精度较低的问题,提出了一种基于改进粒子群优化的MIMO-OFDM信号检测算法。该算法将粒子群优化算法进行改进,并与遗传算法的杂交技术和极值扰动机制相结合,对MIM...针对MIMO-OFDM系统中,基于粒子群优化的信号检测算法易于陷入局部极值和收敛精度较低的问题,提出了一种基于改进粒子群优化的MIMO-OFDM信号检测算法。该算法将粒子群优化算法进行改进,并与遗传算法的杂交技术和极值扰动机制相结合,对MIMO-OFDM系统进行信号检测。理论研究和仿真结果表明,在相同误比特率情况下,所提算法性能优于基于遗传和粒子群优化的MIMO-OFDM信号检测算法性能,与理想信道下的最大似然检测算法性能相比,信噪比仅有1 d B的损失;在较少的迭代次数下,该算法有效地提高了系统的信号检测性能,有较强的全局搜索能力,是一种实用的信号检测方法。展开更多
目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。...目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。采用了二元Middleton class A分布对MIMO PLC系统中噪声进行建模,提出了基于该噪声分布的最大似然检测改进算法,由于改进最大似然检测算法实现复杂度高,为了便于实现,进一步提出了用近似函数降低复杂度的2种次优的检测算法,优化了算法复杂度。仿真结果表明,与传统的基于高斯噪声分布的最大似然检测算法相比,提出的基于二元Middleton class A类噪声分布的信号检测算法在MIMO PLC系统能获得更好的性能。在性能损失较小的情况下,次优算法的复杂度明显低于最大似然检测改进算法。展开更多
在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein...在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein(BB)迭代算法来避免矩阵求逆运算,提出了结构简单的BB迭代信号检测算法,且基于信道硬化特性进一步优化了迭代初始解以加快算法的收敛速度。理论和仿真结果表明,所提出的BB迭代算法的性能优于最近提出的Neumann级数展开算法,而其复杂度相比截短阶数i=3的Neumann级数展开算法减少了一个数量级;且该算法收敛速度较快,在给定初始值的条件下,通过简单的几次迭代,能够快速接近MMSE算法的检测性能。展开更多
文摘在多输入多输出(multiple-input multiple-output,MIMO)系统信号检测中,基于虚实分解的宽度优先检测算法(QR decomposition associated with the M-algorithm to MLD,QRD-M)通过QR分解和对每层星座点的筛选,实现了较低复杂度的检测,具有很好的应用前景。但该算法随收发天线数和调制阶数的增加而难以实现性能与复杂度的折衷。针对此缺点,提出了一种基于信噪比排序的信号检测改进方法。该方法在传统QRD-M算法的基础上,通过对不同接收天线进行信噪比(signal-noise ratio,SNR)排序,从信噪比最大的天线开始检测,避免了误差传播现象,从而加速树搜索过程,再结合动态门限树搜索,不断缩小搜索半径,直至找到最小累计度量值所在分支。仿真结果表明,与传统QRD-MLD算法相比,基于性噪比排序的动态门限信号检测算法能以较低的复杂度获得接近于最大似然检测的性能。
文摘针对MIMO-OFDM系统中,基于粒子群优化的信号检测算法易于陷入局部极值和收敛精度较低的问题,提出了一种基于改进粒子群优化的MIMO-OFDM信号检测算法。该算法将粒子群优化算法进行改进,并与遗传算法的杂交技术和极值扰动机制相结合,对MIMO-OFDM系统进行信号检测。理论研究和仿真结果表明,在相同误比特率情况下,所提算法性能优于基于遗传和粒子群优化的MIMO-OFDM信号检测算法性能,与理想信道下的最大似然检测算法性能相比,信噪比仅有1 d B的损失;在较少的迭代次数下,该算法有效地提高了系统的信号检测性能,有较强的全局搜索能力,是一种实用的信号检测方法。
文摘目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。采用了二元Middleton class A分布对MIMO PLC系统中噪声进行建模,提出了基于该噪声分布的最大似然检测改进算法,由于改进最大似然检测算法实现复杂度高,为了便于实现,进一步提出了用近似函数降低复杂度的2种次优的检测算法,优化了算法复杂度。仿真结果表明,与传统的基于高斯噪声分布的最大似然检测算法相比,提出的基于二元Middleton class A类噪声分布的信号检测算法在MIMO PLC系统能获得更好的性能。在性能损失较小的情况下,次优算法的复杂度明显低于最大似然检测改进算法。
文摘在大规模多输入多输出系统中,最小均方误差(minimum mean square error,MMSE)算法能达到接近最优的线性信号检测性能,但是MMSE算法需要复杂的矩阵求逆运算,这限制了该算法的应用。为了降低运算复杂度,改进MMSE算法,利用Barzilai-Borwein(BB)迭代算法来避免矩阵求逆运算,提出了结构简单的BB迭代信号检测算法,且基于信道硬化特性进一步优化了迭代初始解以加快算法的收敛速度。理论和仿真结果表明,所提出的BB迭代算法的性能优于最近提出的Neumann级数展开算法,而其复杂度相比截短阶数i=3的Neumann级数展开算法减少了一个数量级;且该算法收敛速度较快,在给定初始值的条件下,通过简单的几次迭代,能够快速接近MMSE算法的检测性能。