Suaeda salsa L. seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of K + (12 μmol/L and 6 mmol/L) to study the K + nutrition effect on plant g...Suaeda salsa L. seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of K + (12 μmol/L and 6 mmol/L) to study the K + nutrition effect on plant growth and leaf tonoplast V-H +-ATPase and V-H +-PPase activity. Increase of K + supply in the culture solution markedly increased the fresh weight, dry weight and K + content of S. salsa plants. Western blot analysis showed that the leaf V-H +-ATPase of S. salsa was at least composed of A,B,C,D,E and c subunits, and their expression decreased with the increase of NaCl concentration under K + starvation (12 μmol/L K +), but increased under normal K + application (6 mmol/L K +). Leaf V-H +-PPase molecular weight was about 72.6 kD and its expression increased as NaCl concentration increased under both high or low levels of K + concentration in nutrient solution. There was a positive correlation between of V-H +-ATPase or V-H +-PPase activity and the amounts of their expression. Results in this study suggest that K + nutrition plays an important role in the salt tolerance of S. salsa, and K + is involved in the regulation of V-H +-ATPase or V-H +-PPase activity under salt stress.展开更多
文摘Suaeda salsa L. seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of K + (12 μmol/L and 6 mmol/L) to study the K + nutrition effect on plant growth and leaf tonoplast V-H +-ATPase and V-H +-PPase activity. Increase of K + supply in the culture solution markedly increased the fresh weight, dry weight and K + content of S. salsa plants. Western blot analysis showed that the leaf V-H +-ATPase of S. salsa was at least composed of A,B,C,D,E and c subunits, and their expression decreased with the increase of NaCl concentration under K + starvation (12 μmol/L K +), but increased under normal K + application (6 mmol/L K +). Leaf V-H +-PPase molecular weight was about 72.6 kD and its expression increased as NaCl concentration increased under both high or low levels of K + concentration in nutrient solution. There was a positive correlation between of V-H +-ATPase or V-H +-PPase activity and the amounts of their expression. Results in this study suggest that K + nutrition plays an important role in the salt tolerance of S. salsa, and K + is involved in the regulation of V-H +-ATPase or V-H +-PPase activity under salt stress.