A new type of internally illuminated honeycomb photoreactor was designed. The honeycomb catalyst prepared by using Cedoped TiO2 with 1%–2% vanadium and tungsten was employed for mercury removal from simulated industr...A new type of internally illuminated honeycomb photoreactor was designed. The honeycomb catalyst prepared by using Cedoped TiO2 with 1%–2% vanadium and tungsten was employed for mercury removal from simulated industrial flue gas. The adsorption kinetics in the reaction process were studied. The results showed that the internally illuminated honeycomb photoreactor had good mercury removal performance. When the temperature was 25℃ and the ultraviolet(UV) light intensity reached 80 μW/cm2, the mercury removal efficiency reached 92.5%. The mercury removal efficiency increased significantly with the doping ratio of Ce. XPS analysis showed that the oxidation state of Ce changed from 4 to 3 in the mercury removal reaction and produced lattice oxygen, which acts as an oxidant. O2 can promote mercury removal by honeycomb catalysts;SO2 and HCl also had positive effects, while NO had an inhibitory effect on mercury removal. Kinetic research in the reaction process showed that the quasi-first-order dynamic model had good fitting results, and the correlation coefficients of the fitting results for multiple sets of experimental data were more than 0.999.展开更多
基金supported by the National Key Technologies R&D Program(Grant No.2019YFC1907000)the National Natural Science Foundation of China(Grant No.42030807)+1 种基金the Key Research and Development Program of Hubei Province(Grant No.2020BCA076)the Program for HUST Academic Frontier Youth Team(Grant No.2018QYTD05)。
文摘A new type of internally illuminated honeycomb photoreactor was designed. The honeycomb catalyst prepared by using Cedoped TiO2 with 1%–2% vanadium and tungsten was employed for mercury removal from simulated industrial flue gas. The adsorption kinetics in the reaction process were studied. The results showed that the internally illuminated honeycomb photoreactor had good mercury removal performance. When the temperature was 25℃ and the ultraviolet(UV) light intensity reached 80 μW/cm2, the mercury removal efficiency reached 92.5%. The mercury removal efficiency increased significantly with the doping ratio of Ce. XPS analysis showed that the oxidation state of Ce changed from 4 to 3 in the mercury removal reaction and produced lattice oxygen, which acts as an oxidant. O2 can promote mercury removal by honeycomb catalysts;SO2 and HCl also had positive effects, while NO had an inhibitory effect on mercury removal. Kinetic research in the reaction process showed that the quasi-first-order dynamic model had good fitting results, and the correlation coefficients of the fitting results for multiple sets of experimental data were more than 0.999.