Based on the structure and dimensions of a vertical ZnO nanorod array(V-ZNA)sample,an ideal 2-D photonic crystal model was established.The optical properties of the V-ZNAs were analyzed with finite-difference time-dom...Based on the structure and dimensions of a vertical ZnO nanorod array(V-ZNA)sample,an ideal 2-D photonic crystal model was established.The optical properties of the V-ZNAs were analyzed with finite-difference time-domain(FDTD)method,and the influences of the geometry parameters,including the circumcircle diameters of the top and bottom surfaces(Dt and Db)and the height(H)of the nanorods,and the pitch between each column(L),were discussed.High transmittance and low reflectance in the waveband of 400–800 nm were proved,and the highest transmittance can be obtained with Dt<50 nm,H=200 nm,and Db/L=0.85,which was verified by Effective Index Method(EIM).The result indicates that V-ZNAs can be used as excellent light coupling element and antireflection material for solar energy applications.展开更多
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2009CB939904)the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences
文摘Based on the structure and dimensions of a vertical ZnO nanorod array(V-ZNA)sample,an ideal 2-D photonic crystal model was established.The optical properties of the V-ZNAs were analyzed with finite-difference time-domain(FDTD)method,and the influences of the geometry parameters,including the circumcircle diameters of the top and bottom surfaces(Dt and Db)and the height(H)of the nanorods,and the pitch between each column(L),were discussed.High transmittance and low reflectance in the waveband of 400–800 nm were proved,and the highest transmittance can be obtained with Dt<50 nm,H=200 nm,and Db/L=0.85,which was verified by Effective Index Method(EIM).The result indicates that V-ZNAs can be used as excellent light coupling element and antireflection material for solar energy applications.